// Copyright (c) OpenMMLab. All rights reserved. #include "classifier.h" #include #include "archive/value_archive.h" #include "codebase/mmcls/mmcls.h" #include "core/device.h" #include "core/graph.h" #include "core/mat.h" #include "core/utils/formatter.h" #include "handle.h" using namespace mmdeploy; using namespace std; namespace { Value& config_template() { // clang-format off static Value v{ { "pipeline", { {"input", {"img"}}, {"output", {"cls"}}, { "tasks", { { {"name", "classifier"}, {"type", "Inference"}, {"params", {{"model", "TBD"}}}, {"input", {"img"}}, {"output", {"cls"}} } } } } } }; // clang-format on return v; } template int mmdeploy_classifier_create_impl(ModelType&& m, const char* device_name, int device_id, mm_handle_t* handle) { try { auto value = config_template(); value["pipeline"]["tasks"][0]["params"]["model"] = std::forward(m); auto classifier = std::make_unique(device_name, device_id, std::move(value)); *handle = classifier.release(); return MM_SUCCESS; } catch (const std::exception& e) { MMDEPLOY_ERROR("exception caught: {}", e.what()); } catch (...) { MMDEPLOY_ERROR("unknown exception caught"); } return MM_E_FAIL; } } // namespace int mmdeploy_classifier_create(mm_model_t model, const char* device_name, int device_id, mm_handle_t* handle) { return mmdeploy_classifier_create_impl(*static_cast(model), device_name, device_id, handle); } int mmdeploy_classifier_create_by_path(const char* model_path, const char* device_name, int device_id, mm_handle_t* handle) { return mmdeploy_classifier_create_impl(model_path, device_name, device_id, handle); } int mmdeploy_classifier_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count, mm_class_t** results, int** result_count) { if (handle == nullptr || mats == nullptr || mat_count == 0) { return MM_E_INVALID_ARG; } try { auto classifier = static_cast(handle); Value input{Value::kArray}; for (int i = 0; i < mat_count; ++i) { mmdeploy::Mat _mat{mats[i].height, mats[i].width, PixelFormat(mats[i].format), DataType(mats[i].type), mats[i].data, Device{"cpu"}}; input.front().push_back({{"ori_img", _mat}}); } auto output = classifier->Run(std::move(input)).value().front(); MMDEPLOY_DEBUG("output: {}", output); auto classify_outputs = from_value>(output); vector _result_count; _result_count.reserve(mat_count); for (const auto& cls_output : classify_outputs) { _result_count.push_back((int)cls_output.labels.size()); } auto total = std::accumulate(begin(_result_count), end(_result_count), 0); std::unique_ptr result_count_data(new int[_result_count.size()]{}); std::copy(_result_count.begin(), _result_count.end(), result_count_data.get()); std::unique_ptr result_data(new mm_class_t[total]{}); auto result_ptr = result_data.get(); for (const auto& cls_output : classify_outputs) { for (const auto& label : cls_output.labels) { result_ptr->label_id = label.label_id; result_ptr->score = label.score; ++result_ptr; } } *result_count = result_count_data.release(); *results = result_data.release(); return MM_SUCCESS; } catch (const std::exception& e) { MMDEPLOY_ERROR("exception caught: {}", e.what()); } catch (...) { MMDEPLOY_ERROR("unknown exception caught"); } return MM_E_FAIL; } void mmdeploy_classifier_release_result(mm_class_t* results, const int* result_count, int count) { delete[] results; delete[] result_count; } void mmdeploy_classifier_destroy(mm_handle_t handle) { if (handle != nullptr) { auto classifier = static_cast(handle); delete classifier; } }