import argparse from mmcv import DictAction from mmcv.parallel import MMDataParallel from mmdeploy.apis import (build_dataloader, build_dataset, init_backend_model, post_process_outputs, single_gpu_test) from mmdeploy.utils.config_utils import get_codebase, load_config def parse_args(): parser = argparse.ArgumentParser( description='MMDeploy test (and eval) a backend.') parser.add_argument('deploy_cfg', help='Deploy config path') parser.add_argument('model_cfg', help='Model config path') parser.add_argument( '--model', type=str, nargs='+', help='Input model files.') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--metrics', type=str, nargs='+', help='evaluation metrics, which depends on the codebase and the ' 'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", ' '"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", ' '"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"' ', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument( '--device', help='device used for conversion', default='cpu') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--metric-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') args = parser.parse_args() return args def main(): args = parse_args() if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') deploy_cfg_path = args.deploy_cfg model_cfg_path = args.model_cfg # load deploy_cfg deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path) # prepare the dataset loader codebase = get_codebase(deploy_cfg) dataset_type = 'test' dataset = build_dataset(codebase, model_cfg, dataset_type) data_loader = build_dataloader( codebase, dataset, samples_per_gpu=1, workers_per_gpu=model_cfg.data.workers_per_gpu) # load the model of the backend device_id = -1 if args.device == 'cpu' else 0 model = init_backend_model( args.model, model_cfg=args.model_cfg, deploy_cfg=args.deploy_cfg, device_id=device_id) model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(codebase, model, data_loader, args.show, args.show_dir, args.show_score_thr) post_process_outputs(outputs, dataset, model_cfg, codebase, args.metrics, args.out, args.metric_options, args.format_only) if __name__ == '__main__': main()