# Test on TVM ## Supported Models | Model | Codebase | Model config | | :---------------- | :--------------- | :---------------------------------------------------------------------------------------------: | | RetinaNet | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet) | | Faster R-CNN | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn) | | YOLOv3 | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo) | | YOLOX | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox) | | Mask R-CNN | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn) | | SSD | MMDetection | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd) | | ResNet | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnet) | | ResNeXt | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnext) | | SE-ResNet | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/seresnet) | | MobileNetV2 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/mobilenet_v2) | | ShuffleNetV1 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v1) | | ShuffleNetV2 | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v2) | | VisionTransformer | MMClassification | [config](https://github.com/open-mmlab/mmclassification/tree/master/configs/vision_transformer) | | FCN | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fcn) | | PSPNet | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/pspnet) | | DeepLabV3 | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3) | | DeepLabV3+ | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3plus) | | UNet | MMSegmentation | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/unet) | The table above list the models that we have tested. Models not listed on the table might still be able to converted. Please have a try. ## Test - Ubuntu 20.04 - tvm 0.9.0 | mmcls | metric | PyTorch | TVM | | :----------------------------------------------------------------------------------------------------------------------------------------------------: | :----: | :-----: | :---: | | [ResNet-18](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnet/resnet18_b32x8_imagenet.py) | top-1 | 69.90 | 69.90 | | [ResNeXt-50](https://github.com/open-mmlab/mmclassification/tree/master/configs/resnext/resnext50_32x4d_b32x8_imagenet.py) | top-1 | 77.90 | 77.90 | | [ShuffleNet V2](https://github.com/open-mmlab/mmclassification/tree/master/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py) | top-1 | 69.55 | 69.55 | | [MobileNet V2](https://github.com/open-mmlab/mmclassification/tree/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | top-1 | 71.86 | 71.86 | | mmdet(\*) | metric | PyTorch | TVM | | :-------------------------------------------------------------------------------------: | :----: | :-----: | :--: | | [SSD](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | box AP | 25.5 | 25.5 | \*: We only test model on ssd since dynamic shape is not supported for now. | mmseg | metric | PyTorch | TVM | | :------------------------------------------------------------------------------------------------------------------------: | :----: | :-----: | :---: | | [FCN](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py) | mIoU | 72.25 | 72.36 | | [PSPNet](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py) | mIoU | 78.55 | 77.90 |