MMCls | TensorRT | PPLNN | ncnn | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | T4 | JetsonNano2GB | Jetson TX2 | T4 | SnapDragon888 | Adreno660 | model config file | ||||||||||||
fp32 | fp16 | int8 | fp32 | fp16 | fp32 | fp16 | fp32 | fp32 | |||||||||||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
ResNet | ImageNet | 1x3x224x224 | 2.97 | 336.90 | 1.26 | 791.89 | 1.21 | 829.66 | 59.32 | 16.86 | 30.54 | 32.75 | 24.13 | 41.44 | 1.30 | 768.28 | 33.91 | 29.49 | 25.93 | 38.57 | $MMCLS_DIR/configs/resnet/resnet50_b32x8_imagenet.py |
ResNeXt | ImageNet | 1x3x224x224 | 4.31 | 231.93 | 1.42 | 703.42 | 1.37 | 727.42 | 88.10 | 11.35 | 49.18 | 20.13 | 37.45 | 26.70 | 1.36 | 737.67 | 133.44 | 7.49 | 69.38 | 14.41 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
SE-ResNet | ImageNet | 1x3x224x224 | 3.41 | 293.64 | 1.66 | 600.73 | 1.51 | 662.90 | 74.59 | 13.41 | 48.78 | 20.50 | 29.62 | 33.76 | 1.91 | 524.07 | 107.84 | 9.27 | 80.85 | 12.37 | $MMCLS_DIR/configs/seresnet/seresnet50_b32x8_imagenet.py |
ShuffleNetV2 | ImageNet | 1x3x224x224 | 1.37 | 727.94 | 1.19 | 841.36 | 1.13 | 883.47 | 15.26 | 65.54 | 10.23 | 97.77 | 7.37 | 135.73 | 4.69 | 213.33 | 9.55 | 104.71 | 10.66 | 93.81 | $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py |
MMDet | TensorRT | PPLNN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | T4 | Jetson TX2 | T4 | model config file | |||||||
fp32 | fp16 | int8 | fp32 | fp16 | |||||||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
YOLOv3 | COCO | 1x3x320x320 | 14.76 | 67.76 | 24.92 | 40.13 | 24.92 | 40.13 | - | - | 18.07 | 55.35 | $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py |
SSD-Lite | COCO | 1x3x320x320 | 8.84 | 113.12 | 9.21 | 108.56 | 8.04 | 124.38 | 1.28 | 1.28 | 19.72 | 50.71 | $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py |
RetinaNet | COCO | 1x3x800x1344 | 97.09 | 10.30 | 25.79 | 38.78 | 16.88 | 59.23 | 780.48 | 1.28 | 38.34 | 26.08 | $MMDET_DIR/configs/retinanet/retinanet_r50_fpn_1x_coco.py |
FCOS | COCO | 1x3x800x1344 | 84.06 | 11.90 | 23.15 | 43.20 | 17.68 | 56.57 | - | - | - | - | $MMDET_DIR/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py |
FSAF | COCO | 1x3x800x1344 | 82.96 | 12.05 | 21.02 | 47.58 | 13.50 | 74.08 | - | - | 30.41 | 32.89 | $MMDET_DIR/configs/fsaf/fsaf_r50_fpn_1x_coco.py |
Faster-RCNN | COCO | 1x3x800x1344 | 88.08 | 11.35 | 26.52 | 37.70 | 19.14 | 52.23 | 733.81 | 1.36 | 65.40 | 15.29 | $MMDET_DIR/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py |
Mask-RCNN | COCO | 1x3x800x1344 | 104.83 | 9.54 | 58.27 | 17.16 | - | - | - | - | 86.80 | 11.52 | $MMDET_DIR/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py |
MMDet | ncnn | ||||||
---|---|---|---|---|---|---|---|
Model | Dataset | Input | SnapDragon888 | Adreno660 | model config file | ||
fp32 | fp32 | ||||||
latency (ms) | FPS | latency (ms) | FPS | ||||
MobileNetv2-YOLOv3 | COCO | 1x3x320x320 | 48.57 | 20.59 | 66.55 | 15.03 | $MMDET_DIR/configs/yolo/yolov3_mobilenetv2_mstrain-416_300e_coco.py |
SSD-Lite | COCO | 1x3x320x320 | 44.91 | 22.27 | 66.19 | 15.11 | $MMDET_DIR/configs/ssd/ssdlite_mobilenetv2_scratch_600e_coco.py |
YOLOX | COCO | 1x3x416x416 | 111.60 | 8.96 | 134.50 | 7.43 | $MMDET_DIR/configs/yolox/yolox_tiny_8x8_300e_coco.py |
MMEdit | TensorRT | PPLNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Input | T4 | Jetson TX2 | T4 | model config file | |||||||
fp32 | fp16 | int8 | fp32 | fp16 | ||||||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | |||
ESRGAN | 1x3x32x32 | 12.64 | 79.14 | 12.42 | 80.50 | 12.45 | 80.35 | - | - | 7.67 | 130.39 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py |
SRCNN | 1x3x32x32 | 0.70 | 1436.47 | 0.35 | 2836.62 | 0.26 | 3850.45 | 58.86 | 16.99 | 0.56 | 1775.11 | $MMEDIT_DIR/configs/restorers/srcnn/srcnn_x4k915_g1_1000k_div2k.py |
MMOCR | TensorRT | PPLNN | ncnn | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | T4 | T4 | SnapDragon888 | Adreno660 | model config file | ||||||||
fp32 | fp16 | int8 | fp16 | fp32 | fp32 | ||||||||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
DBNet | ICDAR2015 | 1x3x640x640 | 10.70 | 93.43 | 5.62 | 177.78 | 5.00 | 199.85 | 34.84 | 28.70 | - | - | - | - | $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py |
CRNN | IIIT5K | 1x1x32x32 | 1.93 | 518.28 | 1.40 | 713.88 | 1.36 | 736.79 | - | - | 10.57 | 94.64 | 20.00 | 50.00 | $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py |
MMSeg | TensorRT | PPLNN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Input | T4 | Jetson TX2 | T4 | model config file | |||||||
fp32 | fp16 | int8 | fp32 | fp16 | |||||||||
latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | latency (ms) | FPS | ||||
FCN | Cityscapes | 1x3x512x1024 | 128.42 | 7.79 | 23.97 | 41.72 | 18.13 | 55.15 | 1682.54 | 0.59 | 27.00 | 37.04 | $MMSEG_DIR/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py |
PSPNet | Cityscapes | 1x3x512x1024 | 119.77 | 8.35 | 24.10 | 41.49 | 16.33 | 61.23 | 1586.19 | 0.63 | 27.26 | 36.69 | $MMSEG_DIR/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py |
DeepLabV3 | Cityscapes | 1x3x512x1024 | 226.75 | 4.41 | 31.80 | 31.45 | 19.85 | 50.38 | - | - | 36.01 | 27.77 | $MMSEG_DIR/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py |
DeepLabV3+ | Cityscapes | 1x3x512x1024 | 151.25 | 6.61 | 47.03 | 21.26 | 50.38 | 26.67 | 2534.96 | 0.39 | 34.80 | 28.74 | $MMSEG_DIR/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py |
MMCls | PyTorch | TorchScript | ONNX Runtime | TensorRT | PPLNN | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Metrics | fp32 | seresnet | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
ResNet-18 | Classification | top-1 | 69.90 | 69.90 | 69.88 | 69.88 | 69.86 | 69.86 | 69.86 | $MMCLS_DIR/configs/resnet/resnet18_b32x8_imagenet.py |
top-5 | 89.43 | 89.43 | 89.34 | 89.34 | 89.33 | 89.38 | 89.34 | |||
ResNeXt-50 | Classification | top-1 | 77.90 | 77.90 | 77.90 | 77.90 | - | 77.78 | 77.89 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
top-5 | 93.66 | 93.66 | 93.66 | 93.66 | - | 93.64 | 93.65 | |||
SE-ResNet-50 | Classification | top-1 | 77.74 | 77.74 | 77.74 | 77.74 | 77.75 | 77.63 | 77.73 | $MMCLS_DIR/configs/resnext/resnext50_32x4d_b32x8_imagenet.py |
top-5 | 93.84 | 93.84 | 93.84 | 93.84 | 93.83 | 93.72 | 93.84 | |||
ShuffleNetV1 1.0x | Classification | top-1 | 68.13 | 68.13 | 68.13 | 68.13 | 68.13 | 67.71 | 68.11 | $MMCLS_DIR/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py |
top-5 | 87.81 | 87.81 | 87.81 | 87.81 | 87.81 | 87.58 | 87.80 | |||
ShuffleNetV2 1.0x | Classification | top-1 | 69.55 | 69.55 | 69.55 | 69.55 | 69.54 | 69.10 | 69.54 | $MMCLS_DIR/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py |
top-5 | 88.92 | 88.92 | 88.92 | 88.92 | 88.91 | 88.58 | 88.92 | |||
MobileNet V2 | Classification | top-1 | 71.86 | 71.86 | 71.86 | 71.86 | 71.87 | 70.91 | 71.84 | $MMCLS_DIR$/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py |
top-5 | 90.42 | 90.42 | 90.42 | 90.42 | 90.40 | 89.85 | 90.41 |
MMDet | Pytorch | TorchScript | ONNXRuntime | TensorRT | PPLNN | OpenVINO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | fp32 | model config file |
YOLOV3 | Object Detection | COCO2017 | box AP | 33.7 | 33.7 | - | 33.5 | 33.5 | 33.5 | - | - | $MMDET_DIR/configs/yolo/yolov3_d53_320_273e_coco.py |
SSD | Object Detection | COCO2017 | box AP | 25.5 | 25.5 | - | 25.5 | 25.5 | - | - | - | $MMDET_DIR/configs/ssd/ssd300_coco.py |
RetinaNet | Object Detection | COCO2017 | box AP | 36.5 | 36.4 | - | 36.4 | 36.4 | 36.3 | 36.5 | - | $MMDET_DIR/configs/retinanet/retinanet_r50_fpn_1x_coco.py |
FCOS | Object Detection | COCO2017 | box AP | 36.6 | - | - | 36.6 | 36.5 | - | - | - | $MMDET_DIR/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py |
FSAF | Object Detection | COCO2017 | box AP | 37.4 | 37.4 | - | 37.4 | 37.4 | 37.2 | 37.4 | - | $MMDET_DIR/configs/fsaf/fsaf_r50_fpn_1x_coco.py |
YOLOX | Object Detection | COCO2017 | box AP | 40.5 | 40.3 | - | 40.3 | 40.3 | 29.3 | - | - | $MMDET_DIR/configs/yolox/yolox_s_8x8_300e_coco.py |
Faster R-CNN | Object Detection | COCO2017 | box AP | 37.4 | 37.3 | - | 37.3 | 37.3 | 37.1 | 37.3 | - | $MMDET_DIR/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py |
ATSS | Object Detection | COCO2017 | box AP | 39.4 | - | - | 39.4 | 39.4 | - | - | - | $MMDET_DIR/configs/atss/atss_r50_fpn_1x_coco.py |
Cascade R-CNN | Object Detection | COCO2017 | box AP | 40.4 | - | - | 40.4 | 40.4 | - | 40.4 | - | $MMDET_DIR/configs/cascade_rcnn/cascade_rcnn_r50_caffe_fpn_1x_coco.py |
GFL | Object Detection | COCO2017 | box AP | 40.2 | - | 40.2 | 40.2 | 40.0 | - | - | - | $MMDET_DIR/configs/gfl/gfl_r50_fpn_1x_coco.py |
RepPoints | Object Detection | COCO2017 | box AP | 37.0 | - | - | 36.9 | - | - | - | - | $MMDET_DIR/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py |
Mask R-CNN | Instance Segmentation | COCO2017 | box AP | 38.2 | 38.1 | - | 38.1 | 38.1 | - | 38.0 | - | $MMDET_DIR/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py |
mask AP | 34.7 | 34.7 | - | 33.7 | 33.7 | - | - | - |
MMEdit | Pytorch | TorchScript | ONNX Runtime | TensorRT | PPLNN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
SRCNN | Super Resolution | Set5 | PSNR | 28.4316 | 28.4120 | 28.4323 | 28.4323 | 28.4286 | 28.1995 | 28.4311 | $MMEDIT_DIR/configs/restorers/srcnn/srcnn_x4k915_g1_1000k_div2k.py |
SSIM | 0.8099 | 0.8106 | 0.8097 | 0.8097 | 0.8096 | 0.7934 | 0.8096 | ||||
ESRGAN | Super Resolution | Set5 | PSNR | 28.2700 | 28.2619 | 28.2592 | 28.2592 | - | - | 28.2624 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_x4c64b23g32_g1_400k_div2k.py |
SSIM | 0.7778 | 0.7784 | 0.7764 | 0.7774 | - | - | 0.7765 | ||||
ESRGAN-PSNR | Super Resolution | Set5 | PSNR | 30.6428 | 30.6306 | 30.6444 | 30.6430 | - | - | 27.0426 | $MMEDIT_DIR/configs/restorers/esrgan/esrgan_psnr_x4c64b23g32_g1_1000k_div2k.py |
SSIM | 0.8559 | 0.8565 | 0.8558 | 0.8558 | - | - | 0.8557 | ||||
SRGAN | Super Resolution | Set5 | PSNR | 27.9499 | 27.9252 | 27.9408 | 27.9408 | - | - | 27.9388 | $MMEDIT_DIR/configs/restorers/srresnet_srgan/srgan_x4c64b16_g1_1000k_div2k.py |
SSIM | 0.7846 | 0.7851 | 0.7839 | 0.7839 | - | - | 0.7839 | ||||
SRResNet | Super Resolution | Set5 | PSNR | 30.2252 | 30.2069 | 30.2300 | 30.2300 | - | - | 30.2294 | $MMEDIT_DIR/configs/restorers/srresnet_srgan/msrresnet_x4c64b16_g1_1000k_div2k.py |
SSIM | 0.8491 | 0.8497 | 0.8488 | 0.8488 | - | - | 0.8488 | ||||
Real-ESRNet | Super Resolution | Set5 | PSNR | 28.0297 | - | 27.7016 | 27.7016 | - | - | 27.7049 | $MMEDIT_DIR/configs/restorers/real_esrgan/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost.py |
SSIM | 0.8236 | - | 0.8122 | 0.8122 | - | - | 0.8123 | ||||
EDSR | Super Resolution | Set5 | PSNR | 30.2223 | 30.2192 | 30.2214 | 30.2214 | 30.2211 | 30.1383 | - | $MMEDIT_DIR/configs/restorers/edsr/edsr_x4c64b16_g1_300k_div2k.py |
SSIM | 0.8500 | 0.8507 | 0.8497 | 0.8497 | 0.8497 | 0.8469 | - |
MMOCR | Pytorch | TorchScript | ONNXRuntime | TensorRT | PPLNN | OpenVINO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | fp32 | model config file |
DBNet* | TextDetection | ICDAR2015 | recall | 0.7310 | 0.7308 | 0.7304 | 0.7198 | 0.7179 | 0.7111 | 0.7304 | 0.7309 | $MMOCR_DIR/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py |
precision | 0.8714 | 0.8718 | 0.8714 | 0.8677 | 0.8674 | 0.8688 | 0.8718 | 0.8714 | ||||
hmean | 0.7950 | 0.7949 | 0.7950 | 0.7868 | 0.7856 | 0.7821 | 0.7949 | 0.7950 | ||||
PSENet | TextDetection | ICDAR2015 | recall | 0.7526 | 0.7526 | 0.7526 | 0.7526 | 0.7520 | 0.7496 | - | 0.7526 | $MMOCR_DIR/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py |
precision | 0.8669 | 0.8669 | 0.8669 | 0.8669 | 0.8668 | 0.8550 | - | 0.8669 | ||||
hmean | 0.8057 | 0.8057 | 0.8057 | 0.8057 | 0.8054 | 0.7989 | - | 0.8057 | ||||
PANet | TextDetection | ICDAR2015 | recall | 0.7401 | 0.7401 | 0.7401 | 0.7357 | 0.7366 | - | - | 0.7401 | $MMOCR_DIR/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py |
precision | 0.8601 | 0.8601 | 0.8601 | 0.8570 | 0.8586 | - | - | 0.8601 | ||||
hmean | 0.7955 | 0.7955 | 0.7955 | 0.7917 | 0.7930 | - | - | 0.7955 | ||||
CRNN | TextRecognition | IIIT5K | acc | 0.8067 | 0.8067 | 0.8067 | 0.8067 | 0.8063 | 0.8067 | 0.8067 | - | $MMOCR_DIR/configs/textrecog/crnn/crnn_academic_dataset.py |
SAR | TextRecognition | IIIT5K | acc | 0.9517 | - | 0.9287 | - | - | - | - | - | $MMOCR_DIR/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py |
SATRN | TextRecognition | IIIT5K | acc | 0.9470 | 0.9487 | 0.9487 | 0.9487 | 0.9483 | 0.9483 | - | - | $MMOCR_DIR/configs/textrecog/satrn/satrn_small.py |
MMSeg | Pytorch | TorchScript | ONNXRuntime | TensorRT | PPLNN | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Dataset | Metrics | fp32 | fp32 | fp32 | fp32 | fp16 | int8 | fp16 | model config file |
FCN | Cityscapes | mIoU | 72.25 | 72.36 | - | 72.36 | 72.35 | 74.19 | 72.35 | $MMSEG_DIR/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py |
PSPNet | Cityscapes | mIoU | 78.55 | 78.66 | - | 78.26 | 78.24 | 77.97 | 78.09 | $MMSEG_DIR/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py |
deeplabv3 | Cityscapes | mIoU | 79.09 | 79.12 | - | 79.12 | 79.12 | 78.96 | 79.12 | $MMSEG_DIR/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py |
deeplabv3+ | Cityscapes | mIoU | 79.61 | 79.60 | - | 79.60 | 79.60 | 79.43 | 79.60 | $MMSEG_DIR/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py |
Fast-SCNN | Cityscapes | mIoU | 70.96 | 70.96 | - | 70.93 | 70.92 | 66.00 | 70.92 | $MMSEG_DIR/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py |
UNet | Cityscapes | mIoU | 69.10 | - | - | 69.10 | 69.10 | 68.95 | - | $MMSEG_DIR/configs/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes.py |
ANN | Cityscapes | mIoU | 77.40 | - | - | 77.32 | 77.32 | - | - | $MMSEG_DIR/configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py |
APCNet | Cityscapes | mIoU | 77.40 | - | - | 77.32 | 77.32 | - | - | $MMSEG_DIR/configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py |
BiSeNetV1 | Cityscapes | mIoU | 74.44 | - | - | 74.44 | 74.43 | - | - | $MMSEG_DIR/configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py |
BiSeNetV2 | Cityscapes | mIoU | 73.21 | - | - | 73.21 | 73.21 | - | - | $MMSEG_DIR/configs/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py |
CGNet | Cityscapes | mIoU | 68.25 | - | - | 68.27 | 68.27 | - | - | $MMSEG_DIR/configs/cgnet/cgnet_512x1024_60k_cityscapes.py |
EMANet | Cityscapes | mIoU | 77.59 | - | - | 77.59 | 77.6 | - | - | $MMSEG_DIR/configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py |
EncNet | Cityscapes | mIoU | 75.67 | - | - | 75.66 | 75.66 | - | - | $MMSEG_DIR/configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py |
ERFNet | Cityscapes | mIoU | 71.08 | - | - | 71.08 | 71.07 | - | - | $MMSEG_DIR/configs/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes.py |
FastFCN | Cityscapes | mIoU | 79.12 | - | - | 79.12 | 79.12 | - | - | $MMSEG_DIR/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py |
GCNet | Cityscapes | mIoU | 77.69 | - | - | 77.69 | 77.69 | - | - | $MMSEG_DIR/configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py |
ICNet | Cityscapes | mIoU | 76.29 | - | - | 76.36 | 76.36 | - | - | $MMSEG_DIR/configs/icnet/icnet_r18-d8_832x832_80k_cityscapes.py |
ISANet | Cityscapes | mIoU | 78.49 | - | - | 78.49 | 78.49 | - | - | $MMSEG_DIR/configs/isanet/isanet_r50-d8_512x1024_40k_cityscapes.py |
OCRNet | Cityscapes | mIoU | 74.30 | - | - | 73.66 | 73.67 | - | - | $MMSEG_DIR/configs/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py |
PointRend | Cityscapes | mIoU | 76.47 | - | - | 76.41 | 76.42 | - | - | $MMSEG_DIR/configs/point_rend/pointrend_r50_512x1024_80k_cityscapes.py |
Semantic FPN | Cityscapes | mIoU | 74.52 | - | - | 74.52 | 74.52 | - | - | $MMSEG_DIR/configs/sem_fpn/fpn_r50_512x1024_80k_cityscapes.py |
STDC | Cityscapes | mIoU | 75.10 | - | - | 75.10 | 75.10 | - | - | $MMSEG_DIR/configs/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes.py |
STDC | Cityscapes | mIoU | 77.17 | - | - | 77.17 | 77.17 | - | - | $MMSEG_DIR/configs/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes.py |
UPerNet | Cityscapes | mIoU | 77.10 | - | - | 77.19 | 77.18 | - | - | $MMSEG_DIR/configs/upernet/upernet_r50_512x1024_40k_cityscapes.py |
MMpose | Pytorch | ONNXRuntime | TensorRT | PPLNN | OpenVINO | Model Config | ||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp16 | fp16 | fp32 | model config file |
HRNet | Pose Detection | COCO | AP | 0.748 | 0.748 | 0.748 | 0.748 | - | 0.748 | $MMPOSE_DIR/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py |
AR | 0.802 | 0.802 | 0.802 | 0.802 | - | 0.802 | ||||
LiteHRNet | Pose Detection | COCO | AP | 0.663 | 0.663 | 0.663 | - | - | 0.663 | $MMPOSE_DIR/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/litehrnet_30_coco_256x192.py |
AR | 0.728 | 0.728 | 0.728 | - | - | 0.728 | ||||
MSPN | Pose Detection | COCO | AP | 0.762 | 0.762 | 0.762 | 0.762 | - | 0.762 | $MMPOSE_DIR/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/4xmspn50_coco_256x192.py |
AR | 0.825 | 0.825 | 0.825 | 0.825 | - | 0.825 |
MMRotate | Pytorch | ONNXRuntime | TensorRT | PPLNN | OpenVINO | Model Config | ||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Task | Dataset | Metrics | fp32 | fp32 | fp32 | fp16 | fp16 | fp32 | model config file |
RotatedRetinaNet | Rotated Detection | DOTA-v1.0 | mAP | 0.698 | 0.698 | 0.698 | 0.697 | - | - | $MMROTATE_DIR/configs/rotated_retinanet/rotated_retinanet_obb_r50_fpn_1x_dota_le135.py |
Oriented RCNN | Rotated Detection | DOTA-v1.0 | mAP | 0.756 | 0.756 | - | - | - | - | $MMROTATE_DIR/configs/oriented_rcnn/oriented_rcnn_r50_fpn_1x_dota_le90.py |