#include #include #include #include #include "mmdeploy/detector.h" static int batch_inference(mmdeploy_detector_t detector, std::vector& images, const std::vector& image_ids, const std::vector& mats); static void visualize_detection(const std::string& output_name, cv::Mat& image, const mmdeploy_detection_t* bboxes_ptr, int bboxes_num); int main(int argc, char* argv[]) { if (argc < 5) { fprintf(stderr, "usage:\n object_detection device_name sdk_model_path " "file_path batch_size\n"); return 1; } auto device_name = argv[1]; auto model_path = argv[2]; mmdeploy_detector_t detector{}; int status{}; status = mmdeploy_detector_create_by_path(model_path, device_name, 0, &detector); if (status != MMDEPLOY_SUCCESS) { fprintf(stderr, "failed to create detector, code: %d\n", (int)status); return 1; } // file_path is the path of an image list file std::string file_path = argv[3]; const int batch = std::stoi(argv[argc-1]); // read image paths from the file std::ifstream ifs(file_path); std::string img_path; std::vector img_paths; while (ifs >> img_path) { img_paths.emplace_back(std::move(img_path)); } // read images and process batch inference std::vector images; std::vector image_ids; std::vector mats; for (int i = 0; i < (int)img_paths.size(); ++i) { auto img = cv::imread(img_paths[i]); if (!img.data) { fprintf(stderr, "failed to load image: %s\n", img_paths[i].c_str()); continue; } images.push_back(img); image_ids.push_back(i); mmdeploy_mat_t mat{ img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8}; mats.push_back(mat); // process batch inference if ((int)mats.size() == batch) { if (batch_inference(detector, images, image_ids, mats) != 0) { continue; } // clear buffer for next batch mats.clear(); image_ids.clear(); images.clear(); } } // process batch inference if there are still unhandled images if (!mats.empty()) { (void)batch_inference(detector, images, image_ids, mats); } mmdeploy_detector_destroy(detector); return 0; } int batch_inference(mmdeploy_detector_t detector, std::vector& images, const std::vector& image_ids, const std::vector& mats) { mmdeploy_detection_t* bboxes{}; int* res_count{}; auto status = mmdeploy_detector_apply(detector, mats.data(), mats.size(), &bboxes, &res_count); if (status != MMDEPLOY_SUCCESS) { fprintf(stderr, "failed to apply detector, code: %d\n", (int)status); return 1; } mmdeploy_detection_t* bboxes_ptr = bboxes; for (int i = 0; i < (int)mats.size(); ++i) { fprintf(stdout, "results in the %d-th image:\n bbox_count=%d\n", image_ids[i], res_count[i]); const std::string output_name = "output_detection_" + std::to_string(image_ids[i]) + ".png"; visualize_detection(output_name, images[i], bboxes_ptr, res_count[i]); bboxes_ptr = bboxes_ptr + res_count[i]; } mmdeploy_detector_release_result(bboxes, res_count, mats.size()); return 0; } void visualize_detection(const std::string& output_name, cv::Mat& image, const mmdeploy_detection_t* bboxes_ptr, int bbox_num) { for (int i = 0; i < bbox_num; ++i, ++bboxes_ptr) { const auto& box = bboxes_ptr->bbox; const auto& mask = bboxes_ptr->mask; fprintf(stdout, " box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, " "label=%d, score=%.4f\n", i, box.left, box.top, box.right, box.bottom, bboxes_ptr->label_id, bboxes_ptr->score); // skip detections with invalid bbox size (bbox height or width < 1) if ((box.right - box.left) < 1 || (box.bottom - box.top) < 1) { continue; } // skip detections less than specified score threshold if (bboxes_ptr->score < 0.3) { continue; } // generate mask overlay if model exports masks if (mask != nullptr) { fprintf(stdout, "mask %d, height=%d, width=%d\n", i, mask->height, mask->width); cv::Mat imgMask(mask->height, mask->width, CV_8UC1, &mask->data[0]); auto x0 = std::max(std::floor(box.left) - 1, 0.f); auto y0 = std::max(std::floor(box.top) - 1, 0.f); cv::Rect roi((int)x0, (int)y0, mask->width, mask->height); // split the RGB channels, overlay mask to a specific color channel cv::Mat ch[3]; split(image, ch); int col = 0; cv::bitwise_or(imgMask, ch[col](roi), ch[col](roi)); merge(ch, 3, image); } cv::rectangle(image, cv::Point{(int)box.left, (int)box.top}, cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0}); } cv::imwrite(output_name, image); }