# Copyright (c) OpenMMLab. All rights reserved. import os from tempfile import NamedTemporaryFile, TemporaryDirectory import mmengine import numpy as np import pytest import torch import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.apis import build_task_processor from mmdeploy.codebase import import_codebase from mmdeploy.utils import Codebase, load_config from mmdeploy.utils.test import SwitchBackendWrapper model_cfg_path = 'tests/test_codebase/test_mmocr/data/dbnet.py' model_cfg = load_config(model_cfg_path)[0] deploy_cfg = mmengine.Config( dict( backend_config=dict(type='onnxruntime'), codebase_config=dict(type='mmocr', task='TextDetection'), onnx_config=dict( type='onnx', export_params=True, keep_initializers_as_inputs=False, opset_version=11, input_shape=None, input_names=['input'], output_names=['output']))) onnx_file = NamedTemporaryFile(suffix='.onnx').name task_processor = None img_shape = (32, 32) img = np.random.rand(*img_shape, 3).astype(np.uint8) @pytest.fixture(autouse=True) def init_task_processor(): try: import_codebase(Codebase.MMOCR) except ImportError: pytest.skip( f'{Codebase.MMOCR} is not installed.', allow_module_level=True) global task_processor task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') def test_build_pytorch_model(): from mmocr.utils.setup_env import register_all_modules register_all_modules() from mmocr.models.textdet.detectors.single_stage_text_detector import \ SingleStageTextDetector model = task_processor.build_pytorch_model(None) assert isinstance(model, SingleStageTextDetector) @pytest.fixture def backend_model(): from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set(outputs={ 'output': torch.rand(1, *img_shape), }) yield task_processor.build_backend_model(['']) wrapper.recover() def test_build_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) def test_create_input(): inputs = task_processor.create_input(img, input_shape=img_shape) assert isinstance(inputs, tuple) and len(inputs) == 2 def test_visualize(backend_model): input_dict, _ = task_processor.create_input(img, input_shape=img_shape) results = backend_model.test_step(input_dict)[0] with TemporaryDirectory() as dir: filename = dir + 'tmp.jpg' task_processor.visualize(img, results, filename, 'tmp') assert os.path.exists(filename) def test_get_tensor_from_input(): input_data = {'inputs': torch.ones(3, 4, 5)} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, torch.ones(3, 4, 5)) def test_get_partition_cfg(): with pytest.raises(NotImplementedError): _ = task_processor.get_partition_cfg(partition_type='')