# Copyright (c) OpenMMLab. All rights reserved. _base_ = [] checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # model label_convertor = dict( type='CTCConvertor', dict_type='DICT36', with_unknown=False, lower=True) model = dict( type='CRNNNet', preprocessor=None, backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1), encoder=None, decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True), loss=dict(type='CTCLoss'), label_convertor=label_convertor, pretrained=None) train_cfg = None test_cfg = None # optimizer optimizer = dict(type='Adadelta', lr=1.0) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='step', step=[]) total_epochs = 5 # data img_norm_cfg = dict(mean=[127], std=[127]) train_pipeline = [ dict(type='LoadImageFromFile', color_type='grayscale'), dict( type='ResizeOCR', height=32, min_width=100, max_width=100, keep_aspect_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img'], meta_keys=['filename', 'resize_shape', 'text', 'valid_ratio']), ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='grayscale'), dict( type='ResizeOCR', height=32, min_width=32, max_width=None, keep_aspect_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img'], meta_keys=['filename', 'resize_shape', 'valid_ratio']), ] dataset_type = 'OCRDataset' test_prefix = 'tests/test_codebase/test_mmocr/data/' test_img_prefix1 = test_prefix test_ann_file1 = test_prefix + 'text_recognition.txt' test1 = dict( type=dataset_type, img_prefix=test_img_prefix1, ann_file=test_ann_file1, loader=dict( type='HardDiskLoader', repeat=1, parser=dict( type='LineStrParser', keys=['filename', 'text'], keys_idx=[0, 1], separator=' ')), pipeline=None, test_mode=True) data = dict( samples_per_gpu=64, workers_per_gpu=4, val_dataloader=dict(samples_per_gpu=1), test_dataloader=dict(samples_per_gpu=1), val=dict( type='UniformConcatDataset', datasets=[test1], pipeline=test_pipeline), test=dict( type='UniformConcatDataset', datasets=[test1], pipeline=test_pipeline)) evaluation = dict(interval=1, metric='acc') cudnn_benchmark = True