// Copyright (c) OpenMMLab. All rights reserved. #include "codebase/mmseg/mmseg.h" #include "core/tensor.h" #include "core/utils/device_utils.h" #include "core/utils/formatter.h" #include "preprocess/cpu/opencv_utils.h" #include "preprocess/transform/transform.h" namespace mmdeploy::mmseg { class ResizeMask : public MMSegmentation { public: explicit ResizeMask(const Value &cfg) : MMSegmentation(cfg) { try { classes_ = cfg["params"]["num_classes"].get(); } catch (const std::exception &e) { ERROR("no ['params']['num_classes'] is specified in cfg: {}", cfg); throw_exception(eInvalidArgument); } } Result operator()(const Value &preprocess_result, const Value &inference_result) { DEBUG("preprocess: {}\ninference: {}", preprocess_result, inference_result); auto mask = inference_result["output"].get(); DEBUG("tensor.name: {}, tensor.shape: {}, tensor.data_type: {}", mask.name(), mask.shape(), mask.data_type()); if (!(mask.shape().size() == 4 && mask.shape(0) == 1 && mask.shape(1) == 1)) { ERROR("unsupported `output` tensor, shape: {}", mask.shape()); return Status(eNotSupported); } auto height = (int)mask.shape(2); auto width = (int)mask.shape(3); auto input_height = preprocess_result["img_metas"]["ori_shape"][1].get(); auto input_width = preprocess_result["img_metas"]["ori_shape"][2].get(); Device host{"cpu"}; OUTCOME_TRY(auto host_tensor, MakeAvailableOnDevice(mask, host, stream_)); OUTCOME_TRY(stream_.Wait()); if (mask.data_type() == DataType::kINT64) { // change kINT64 to 2 INT32 TensorDesc desc{.device = host_tensor.device(), .data_type = DataType::kINT32, .shape = {1, 2, height, width}, .name = host_tensor.name()}; Tensor _host_tensor(desc, mask.buffer()); return MaskResize(_host_tensor, input_height, input_width); } else if (mask.data_type() == DataType::kINT32) { return MaskResize(host_tensor, input_height, input_width); } else { ERROR("unsupported `output` tensor, dtype: {}", (int)mask.data_type()); return Status(eNotSupported); } } private: Result MaskResize(Tensor &tensor, int dst_height, int dst_width) { auto channel = tensor.shape(1); auto height = tensor.shape(2); auto width = tensor.shape(3); // reshape tensor to convert it to cv::Mat tensor.Reshape({1, height, width, channel}); auto mat = cpu::Tensor2CVMat(tensor); auto dst = cpu::Resize(mat, dst_height, dst_width, "nearest"); if (channel == 1) { auto output_tensor = cpu::CVMat2Tensor(dst); SegmentorOutput output{output_tensor, dst_height, dst_width, classes_}; return to_value(output); } else { cv::Mat _dst; cv::extractChannel(dst, _dst, 0); auto output_tensor = cpu::CVMat2Tensor(_dst); SegmentorOutput output{output_tensor, dst_height, dst_width, classes_}; return to_value(output); } } protected: int classes_{}; }; REGISTER_CODEBASE_COMPONENT(MMSegmentation, ResizeMask); } // namespace mmdeploy::mmseg