# Copyright (c) OpenMMLab. All rights reserved. # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import inference_pb2 as inference__pb2 class InferenceStub(object): """The inference service definition.""" def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Echo = channel.unary_unary( '/mmdeploy.Inference/Echo', request_serializer=inference__pb2.Empty.SerializeToString, response_deserializer=inference__pb2.Reply.FromString, ) self.Init = channel.unary_unary( '/mmdeploy.Inference/Init', request_serializer=inference__pb2.Model.SerializeToString, response_deserializer=inference__pb2.Reply.FromString, ) self.OutputNames = channel.unary_unary( '/mmdeploy.Inference/OutputNames', request_serializer=inference__pb2.Empty.SerializeToString, response_deserializer=inference__pb2.Names.FromString, ) self.Inference = channel.unary_unary( '/mmdeploy.Inference/Inference', request_serializer=inference__pb2.TensorList.SerializeToString, response_deserializer=inference__pb2.Reply.FromString, ) self.Destroy = channel.unary_unary( '/mmdeploy.Inference/Destroy', request_serializer=inference__pb2.Empty.SerializeToString, response_deserializer=inference__pb2.Reply.FromString, ) class InferenceServicer(object): """The inference service definition.""" def Echo(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Init(self, request, context): """Init Model with model file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def OutputNames(self, request, context): """Get output names.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Inference(self, request, context): """Inference with inputs.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Destroy(self, request, context): """Destroy handle.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_InferenceServicer_to_server(servicer, server): rpc_method_handlers = { 'Echo': grpc.unary_unary_rpc_method_handler( servicer.Echo, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'Init': grpc.unary_unary_rpc_method_handler( servicer.Init, request_deserializer=inference__pb2.Model.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'OutputNames': grpc.unary_unary_rpc_method_handler( servicer.OutputNames, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Names.SerializeToString, ), 'Inference': grpc.unary_unary_rpc_method_handler( servicer.Inference, request_deserializer=inference__pb2.TensorList.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'Destroy': grpc.unary_unary_rpc_method_handler( servicer.Destroy, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'mmdeploy.Inference', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler, )) # This class is part of an EXPERIMENTAL API. class Inference(object): """The inference service definition.""" @staticmethod def Echo(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Echo', inference__pb2.Empty.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Init(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Init', inference__pb2.Model.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def OutputNames(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/OutputNames', inference__pb2.Empty.SerializeToString, inference__pb2.Names.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Inference(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Inference', inference__pb2.TensorList.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Destroy(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Destroy', inference__pb2.Empty.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)