## ONNX Runtime Ops - [ONNX Runtime Ops](#onnx-runtime-ops) - [grid_sampler](#grid_sampler) - [Description](#description) - [Parameters](#parameters) - [Inputs](#inputs) - [Outputs](#outputs) - [Type Constraints](#type-constraints) - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) - [Description](#description-1) - [Parameters](#parameters-1) - [Inputs](#inputs-1) - [Outputs](#outputs-1) - [Type Constraints](#type-constraints-1) - [NMSRotated](#nmsrotated) - [Description](#description-2) - [Parameters](#parameters-2) - [Inputs](#inputs-2) - [Outputs](#outputs-2) - [Type Constraints](#type-constraints-2) ### grid_sampler #### Description Perform sample from `input` with pixel locations from `grid`. #### Parameters | Type | Parameter | Description | | ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | | `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | | `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | #### Inputs
input: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
grid: T
Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output.
#### Outputs
output: T
Output feature; 4-D tensor of shape (N, C, outH, outW).
#### Type Constraints - T:tensor(float32, Linear) ### MMCVModulatedDeformConv2d #### Description Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. #### Parameters | Type | Parameter | Description | | -------------- | ------------------- | ------------------------------------------------------------------------------------- | | `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | | `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | | `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | | `int` | `deformable_groups` | Groups of deformable offset. | | `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. | #### Inputs
inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
inputs[2]: T
Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
inputs[3]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
inputs[4]: T, optional
Input bias; 1-D tensor of shape (output_channel).
#### Outputs
outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints - T:tensor(float32, Linear) ### NMSRotated #### Description Non Max Suppression for rotated bboxes. #### Parameters | Type | Parameter | Description | | -------------- | ------------------- | ------------------------------------------------------------------------------------- | | `float` | `iou_threshold` | The IoU threshold for NMS. | #### Inputs
inputs[0]: T
Input feature; 2-D tensor of shape (N, 5), where N is the number of rotated bboxes, .
inputs[1]: T
Input offset; 1-D tensor of shape (N, ), where N is the number of rotated bboxes.
#### Outputs
outputs[0]: T
Output feature; 1-D tensor of shape (K, ), where K is the number of keep bboxes.
#### Type Constraints - T:tensor(float32, Linear)