# Copyright (c) OpenMMLab. All rights reserved. from tempfile import NamedTemporaryFile, TemporaryDirectory import numpy as np import pytest import torch import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.codebase import import_codebase from mmdeploy.utils import Codebase, load_config from mmdeploy.utils.test import SwitchBackendWrapper try: import_codebase(Codebase.MMPOSE) except ImportError: pytest.skip( f'{Codebase.MMPOSE.value} is not installed.', allow_module_level=True) from .utils import (generate_datasample, generate_mmpose_deploy_config, generate_mmpose_task_processor) model_cfg_path = 'tests/test_codebase/test_mmpose/data/model.py' model_cfg = load_config(model_cfg_path)[0] deploy_cfg = generate_mmpose_deploy_config() onnx_file = NamedTemporaryFile(suffix='.onnx').name task_processor = generate_mmpose_task_processor() img_shape = (192, 256) heatmap_shape = (48, 64) # mmpose.apis.inference.LoadImage uses opencv, needs float32 in # cv2.cvtColor. img = np.random.rand(*img_shape, 3).astype(np.float32) img_path = 'tests/data/tiger.jpeg' num_output_channels = 17 @pytest.mark.parametrize('imgs', [img, img_path]) def test_create_input(imgs): inputs = task_processor.create_input(imgs, input_shape=img_shape) assert isinstance(inputs, tuple) and len(inputs) == 2 def test_build_pytorch_model(): from mmpose.models.pose_estimators.base import BasePoseEstimator model = task_processor.build_pytorch_model(None) assert isinstance(model, BasePoseEstimator) @pytest.fixture def backend_model(): from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set(outputs={ 'output': torch.rand(1, num_output_channels, *heatmap_shape), }) yield task_processor.build_backend_model(['']) wrapper.recover() def test_build_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) def test_visualize(): datasample = generate_datasample(img.shape[:2]) output_file = NamedTemporaryFile(suffix='.jpg').name task_processor.visualize( img, datasample, output_file, show_result=False, window_name='test') def test_get_tensor_from_input(): data = torch.ones(3, 4, 5) input_data = {'inputs': data} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, data) def test_get_partition_cfg(): try: _ = task_processor.get_partition_cfg(partition_type='') except NotImplementedError: pass def test_get_model_name(): model_name = task_processor.get_model_name() assert isinstance(model_name, str) and model_name is not None def test_build_dataset_and_dataloader(): from torch.utils.data import DataLoader, Dataset val_dataloader = model_cfg['val_dataloader'] dataset = task_processor.build_dataset( dataset_cfg=val_dataloader['dataset']) assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(val_dataloader) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' def test_build_test_runner(backend_model): from mmdeploy.codebase.base.runner import DeployTestRunner temp_dir = TemporaryDirectory().name runner = task_processor.build_test_runner(backend_model, temp_dir) assert isinstance(runner, DeployTestRunner) def test_get_preprocess(): process = task_processor.get_preprocess() assert process is not None def test_get_postprocess(): process = task_processor.get_postprocess() assert isinstance(process, dict)