# Copyright (c) OpenMMLab. All rights reserved. import copy from tempfile import NamedTemporaryFile, TemporaryDirectory from typing import Any import mmcv import pytest import torch import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.apis import build_task_processor from mmdeploy.codebase import import_codebase from mmdeploy.utils import Codebase, load_config from mmdeploy.utils.test import SwitchBackendWrapper try: import_codebase(Codebase.MMSEG) except ImportError: pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True) from .utils import generate_datasample # noqa: E402 from .utils import generate_mmseg_deploy_config # noqa: E402 model_cfg_path = 'tests/test_codebase/test_mmseg/data/model.py' model_cfg = load_config(model_cfg_path)[0] deploy_cfg = generate_mmseg_deploy_config() task_processor = None img_shape = (32, 32) tiger_img_path = 'tests/data/tiger.jpeg' img = mmcv.imread(tiger_img_path) img = mmcv.imresize(img, img_shape) @pytest.fixture(autouse=True) def init_task_processor(): global task_processor task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') @pytest.mark.parametrize('from_mmrazor', [True, False, '123', 0]) def test_build_pytorch_model(from_mmrazor: Any): from mmseg.models.segmentors.base import BaseSegmentor if from_mmrazor is False: _task_processor = task_processor else: _model_cfg_path = 'tests/test_codebase/test_mmseg/data/' \ 'mmrazor_model.py' _model_cfg = load_config(_model_cfg_path)[0] _model_cfg.algorithm.architecture.model.type = 'mmseg.EncoderDecoder' _model_cfg.algorithm.distiller.teacher.type = 'mmseg.EncoderDecoder' _deploy_cfg = copy.deepcopy(deploy_cfg) _deploy_cfg.codebase_config['from_mmrazor'] = from_mmrazor _task_processor = build_task_processor(_model_cfg, _deploy_cfg, 'cpu') if not isinstance(from_mmrazor, bool): with pytest.raises( TypeError, match='`from_mmrazor` attribute must be ' 'boolean type! ' f'but got: {from_mmrazor}'): _ = _task_processor.from_mmrazor return assert from_mmrazor == _task_processor.from_mmrazor if from_mmrazor: pytest.importorskip('mmrazor', reason='mmrazor is not installed.') model = _task_processor.build_pytorch_model(None) assert isinstance(model, BaseSegmentor) @pytest.fixture def backend_model(): from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) wrapper = SwitchBackendWrapper(ORTWrapper) wrapper.set(outputs={ 'output': torch.rand(1, 1, *img_shape), }) yield task_processor.build_backend_model(['']) wrapper.recover() def test_build_backend_model(backend_model): assert isinstance(backend_model, torch.nn.Module) def test_create_input(): img_path = 'tests/data/tiger.jpeg' data_preprocessor = task_processor.build_data_preprocessor() inputs = task_processor.create_input( img_path, input_shape=img_shape, data_preprocessor=data_preprocessor) assert isinstance(inputs, tuple) and len(inputs) == 2 def test_build_data_preprocessor(): from mmseg.models import SegDataPreProcessor data_preprocessor = task_processor.build_data_preprocessor() assert isinstance(data_preprocessor, SegDataPreProcessor) def test_get_visualizer(): from mmseg.visualization import SegLocalVisualizer tmp_dir = TemporaryDirectory().name visualizer = task_processor.get_visualizer('ort', tmp_dir) assert isinstance(visualizer, SegLocalVisualizer) def test_get_tensort_from_input(): data = torch.rand(3, 4, 5) input_data = {'inputs': data} inputs = task_processor.get_tensor_from_input(input_data) assert torch.equal(inputs, data) def test_get_partition_cfg(): try: _ = task_processor.get_partition_cfg(partition_type='') except NotImplementedError: pass def test_build_dataset_and_dataloader(): from torch.utils.data import DataLoader, Dataset val_dataloader = model_cfg['val_dataloader'] dataset = task_processor.build_dataset( dataset_cfg=val_dataloader['dataset']) assert isinstance(dataset, Dataset), 'Failed to build dataset' dataloader = task_processor.build_dataloader(val_dataloader) assert isinstance(dataloader, DataLoader), 'Failed to build dataloader' def test_build_test_runner(backend_model): from mmdeploy.codebase.base.runner import DeployTestRunner temp_dir = TemporaryDirectory().name runner = task_processor.build_test_runner(backend_model, temp_dir) assert isinstance(runner, DeployTestRunner) def test_visualize(): h, w = img.shape[:2] datasample = generate_datasample(h, w) output_file = NamedTemporaryFile(suffix='.jpg').name task_processor.visualize( img, datasample, output_file, show_result=False, window_name='test') def test_get_preprocess(): process = task_processor.get_preprocess() assert process is not None def test_get_postprocess(): process = task_processor.get_postprocess() assert isinstance(process, dict) def test_get_model_name(): name = task_processor.get_model_name() assert isinstance(name, str)