# Copyright (c) OpenMMLab. All rights reserved. import mmengine import numpy as np import pytest import torch import mmdeploy.backend.onnxruntime as ort_apis from mmdeploy.codebase import import_codebase from mmdeploy.utils import Backend, Codebase from mmdeploy.utils.test import SwitchBackendWrapper, backend_checker try: import_codebase(Codebase.MMSEG) except ImportError: pytest.skip(f'{Codebase.MMSEG} is not installed.', allow_module_level=True) from .utils import generate_datasample # noqa: E402 from .utils import generate_mmseg_deploy_config # noqa: E402 NUM_CLASS = 19 IMAGE_SIZE = 32 @backend_checker(Backend.ONNXRUNTIME) class TestEnd2EndModel: @classmethod def setup_class(cls): # force add backend wrapper regardless of plugins from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference cls.wrapper = SwitchBackendWrapper(ORTWrapper) cls.outputs = { 'output': torch.rand(1, 1, IMAGE_SIZE, IMAGE_SIZE), } cls.wrapper.set(outputs=cls.outputs) deploy_cfg = generate_mmseg_deploy_config() from mmdeploy.codebase.mmseg.deploy.segmentation_model import \ End2EndModel cls.end2end_model = End2EndModel( Backend.ONNXRUNTIME, [''], device='cpu', deploy_cfg=deploy_cfg) @classmethod def teardown_class(cls): cls.wrapper.recover() def test_forward(self): from mmseg.structures import SegDataSample imgs = torch.rand(1, 3, IMAGE_SIZE, IMAGE_SIZE) data_samples = [generate_datasample(IMAGE_SIZE, IMAGE_SIZE)] results = self.end2end_model.forward(imgs, data_samples) assert len(results) == 1 assert isinstance(results[0], SegDataSample) @backend_checker(Backend.RKNN) class TestRKNNModel: @classmethod def setup_class(cls): # force add backend wrapper regardless of plugins import mmdeploy.backend.rknn as rknn_apis from mmdeploy.backend.rknn import RKNNWrapper rknn_apis.__dict__.update({'RKNNWrapper': RKNNWrapper}) # simplify backend inference cls.wrapper = SwitchBackendWrapper(RKNNWrapper) cls.outputs = [torch.rand(1, 19, IMAGE_SIZE, IMAGE_SIZE)] cls.wrapper.set(outputs=cls.outputs) deploy_cfg = mmengine.Config({ 'onnx_config': { 'output_names': ['outputs'] }, 'backend_config': { 'common_config': {} } }) from mmdeploy.codebase.mmseg.deploy.segmentation_model import RKNNModel class_names = ['' for i in range(NUM_CLASS)] palette = np.random.randint(0, 255, size=(NUM_CLASS, 3)) cls.rknn_model = RKNNModel( Backend.RKNN, [''], device='cpu', class_names=class_names, palette=palette, deploy_cfg=deploy_cfg) def test_forward_test(self): imgs = torch.rand(2, 3, IMAGE_SIZE, IMAGE_SIZE) results = self.rknn_model.forward_test(imgs) assert isinstance(results[0], np.ndarray) @backend_checker(Backend.ONNXRUNTIME) def test_build_segmentation_model(): model_cfg = mmengine.Config( dict(data=dict(test={'type': 'CityscapesDataset'}))) deploy_cfg = generate_mmseg_deploy_config() from mmdeploy.backend.onnxruntime import ORTWrapper ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) # simplify backend inference with SwitchBackendWrapper(ORTWrapper) as wrapper: wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg) from mmdeploy.codebase.mmseg.deploy.segmentation_model import ( End2EndModel, build_segmentation_model) segmentor = build_segmentation_model([''], model_cfg, deploy_cfg, 'cpu') assert isinstance(segmentor, End2EndModel)