# Copyright (c) OpenMMLab. All rights reserved. # model settings model = dict( type='ImageClassifier', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), style='pytorch'), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=2048, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1, 5), )) # dataset settings dataset_type = 'ImageNet' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', size=(256, -1)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ] data = dict( samples_per_gpu=32, workers_per_gpu=2, test=dict( type=dataset_type, data_prefix='tests/test_codebase/test_mmcls/data/imgs/dataset', ann_file='tests/test_codebase/test_mmcls/data/imgs/ann.txt', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='accuracy')