# ncnn Support
MMDeploy now supports ncnn version == 1.0.20220216
## Installation
### Install ncnn
- Download VulkanTools for the compilation of ncnn.
```bash
wget https://sdk.lunarg.com/sdk/download/1.2.176.1/linux/vulkansdk-linux-x86_64-1.2.176.1.tar.gz?Human=true -O vulkansdk-linux-x86_64-1.2.176.1.tar.gz
tar -xf vulkansdk-linux-x86_64-1.2.176.1.tar.gz
export VULKAN_SDK=$(pwd)/1.2.176.1/x86_64
export LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
```
- Check your gcc version.
You should ensure your gcc satisfies `gcc >= 6`.
- Install Protocol Buffers through:
```bash
apt-get install libprotobuf-dev protobuf-compiler
```
- Prepare ncnn Framework
- Download ncnn source code
```bash
git clone -b 20220216 git@github.com:Tencent/ncnn.git
```
- Make install ncnn library
```bash
cd ncnn
export NCNN_DIR=$(pwd)
git submodule update --init
mkdir -p build && cd build
cmake -DNCNN_VULKAN=ON -DNCNN_SYSTEM_GLSLANG=ON -DNCNN_BUILD_EXAMPLES=ON -DNCNN_PYTHON=ON -DNCNN_BUILD_TOOLS=ON -DNCNN_BUILD_BENCHMARK=ON -DNCNN_BUILD_TESTS=ON ..
make install
```
- Install pyncnn module
```bash
cd ${NCNN_DIR} # To ncnn root directory
cd python
pip install -e .
```
### Build custom ops
Some custom ops are created to support models in OpenMMLab, the custom ops can be built as follows:
```bash
cd ${MMDEPLOY_DIR}
mkdir -p build && cd build
cmake -DMMDEPLOY_TARGET_BACKENDS=ncnn ..
make -j$(nproc)
```
If you haven't installed ncnn in the default path, please add `-Dncnn_DIR` flag in cmake.
```bash
cmake -DMMDEPLOY_TARGET_BACKENDS=ncnn -Dncnn_DIR=${NCNN_DIR}/build/install/lib/cmake/ncnn ..
make -j$(nproc)
```
## Convert model
- This follows the tutorial on [How to convert model](../02-how-to-run/convert_model.md).
- The converted model has two files: `.param` and `.bin`, as model structure file and weight file respectively.
## Reminder
- In ncnn version >= 1.0.20220216, the dimension of ncnn.Mat should be no more than 4.
## FAQs
1. When running ncnn models for inference with custom ops, it fails and shows the error message like:
```bash
TypeError: register mm custom layers(): incompatible function arguments. The following argument types are supported:
1.(ar0: ncnn:Net) -> int
Invoked with:
```
This is because of the failure to bind ncnn C++ library to pyncnn. You should build pyncnn from C++ ncnn source code, but not by `pip install`