// Copyright (c) OpenMMLab. All rights reserved. // right alignment broadcast (c, h, w). // the same as onnx #include "expand.h" #include "../ncnn_ops_definer.h" namespace mmdeploy { using namespace ncnn; DEFINE_LAYER_CREATOR(Expand) DEFINE_NCNN_OPS(Expand, Expand) Expand::Expand() { one_blob_only = false; support_inplace = false; } int Expand::forward(const std::vector& bottom_blobs, std::vector& top_blobs, const Option& opt) const { const Mat& bottom_blob = bottom_blobs[0]; size_t elemsize = bottom_blob.elemsize; const Mat& old_shape_blob = bottom_blobs[1]; const int shape_width = old_shape_blob.w - 1; Mat shape_blob(shape_width, elemsize, opt.workspace_allocator); memcpy(shape_blob.row(0), old_shape_blob.row(0) + 1, shape_width * elemsize); Mat& top_blob = top_blobs[0]; if (bottom_blob.dims == 1 && shape_blob.w == 1) { int shape_0 = (int)(shape_blob[0] + 0.5); if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d) vs (%d)\n", bottom_blob.w, shape_0); } else if (bottom_blob.w == shape_0 || shape_0 == 1) { top_blob.create(bottom_blob.w, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int i = 0; i < bottom_blob.w; i++) { top_blob[i] = bottom_blob[i]; } } else if (bottom_blob.w == 1) { top_blob.create(shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int i = 0; i < shape_0; i++) { top_blob[i] = bottom_blob[0]; } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } if (bottom_blob.dims == 1 && shape_blob.w == 2) { int shape_0 = (int)(shape_blob[0] + 0.5); int shape_1 = (int)(shape_blob[1] + 0.5); if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) { fprintf(stderr, "The broadcast rule is wrong, (1, %d) vs (%d, %d)\n", bottom_blob.w, shape_0, shape_1); } else if (bottom_blob.w == shape_1 || shape_1 == 1) { top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < shape_0; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.row(j)[i] = bottom_blob[i]; } } } else if (bottom_blob.w == 1) { top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < shape_0; j++) { for (int i = 0; i < shape_1; i++) { top_blob.row(j)[i] = bottom_blob[0]; } } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } if (bottom_blob.dims == 1 && shape_blob.w == 3) { int shape_0 = (int)(shape_blob[0] + 0.5); int shape_1 = (int)(shape_blob[1] + 0.5); int shape_2 = (int)(shape_blob[2] + 0.5); if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) { fprintf(stderr, "The broadcast rule is wrong, (1, 1, %d) vs (%d, %d, %d)\n", bottom_blob.w, shape_0, shape_1, shape_2); } else if (bottom_blob.w == shape_2 || shape_2 == 1) { top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob[i]; } } } } else if (bottom_blob.w == 1) { top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob[0]; } } } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } if (bottom_blob.dims == 2 && shape_blob.w == 2) { int shape_0 = (int)(shape_blob[0] + 0.5); int shape_1 = (int)(shape_blob[1] + 0.5); if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h, bottom_blob.w, shape_0, shape_1); } else if (bottom_blob.h != shape_0 && bottom_blob.h != 1 && shape_0 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h, bottom_blob.w, shape_0, shape_1); } else if ((bottom_blob.w == shape_1 || shape_1 == 1) && (bottom_blob.h == shape_0 || shape_0 == 1)) { top_blob.create(bottom_blob.w, bottom_blob.h, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.row(j)[i] = bottom_blob.row(j)[i]; } } } else if ((bottom_blob.w == shape_1 || shape_1 == 1) && (bottom_blob.h == 1)) { top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < shape_0; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.row(j)[i] = bottom_blob.row(0)[i]; } } } else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_0 || shape_0 == 1)) { top_blob.create(shape_1, bottom_blob.h, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < shape_1; i++) { top_blob.row(j)[i] = bottom_blob.row(j)[0]; } } } else if (bottom_blob.h == 1 && bottom_blob.w == 1) { top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int j = 0; j < shape_0; j++) { for (int i = 0; i < shape_1; i++) { top_blob.row(j)[i] = bottom_blob.row(0)[0]; } } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } if (bottom_blob.dims == 2 && shape_blob.w == 3) { int shape_0 = (int)(shape_blob[0] + 0.5); int shape_1 = (int)(shape_blob[1] + 0.5); int shape_2 = (int)(shape_blob[2] + 0.5); if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2); } else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2); } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == shape_1 || shape_1 == 1)) { top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[i]; } } } } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1)) { top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[i]; } } } } else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_1 || shape_1 == 1)) { top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[0]; } } } } else if (bottom_blob.h == 1 && bottom_blob.w == 1) { top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[0]; } } } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } if (bottom_blob.dims == 3 && shape_blob.w == 3) { int shape_0 = (int)(shape_blob[0] + 0.5); int shape_1 = (int)(shape_blob[1] + 0.5); int shape_2 = (int)(shape_blob[2] + 0.5); if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2); } else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2); } else if (bottom_blob.c != shape_0 && bottom_blob.c != 1 && shape_0 != 1) { fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c, bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2); } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == shape_0 || shape_0 == 1)) { top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < bottom_blob.c; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i]; } } } } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == 1)) { top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[i]; } } } } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) && (bottom_blob.c == shape_0 || shape_0 == 1)) { top_blob.create(bottom_blob.w, shape_1, bottom_blob.c, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < bottom_blob.c; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[i]; } } } } else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) && (bottom_blob.c == 1)) { top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < bottom_blob.w; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[i]; } } } } else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == shape_0 || shape_0 == 1)) { top_blob.create(shape_2, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < bottom_blob.c; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0]; } } } } else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == 1)) { top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < bottom_blob.h; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[0]; } } } } else if (bottom_blob.w == 1 && bottom_blob.h == 1 && (bottom_blob.c == shape_0 || shape_0 == 1)) { top_blob.create(shape_2, shape_1, bottom_blob.c, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < bottom_blob.c; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[0]; } } } } else if (bottom_blob.w == 1 && bottom_blob.h == 1 && bottom_blob.c == 1) { top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator); if (top_blob.empty()) return -100; for (int k = 0; k < shape_0; k++) { for (int j = 0; j < shape_1; j++) { for (int i = 0; i < shape_2; i++) { top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[0]; } } } } else { fprintf(stderr, "error case\n"); return -100; } return 0; } fprintf(stderr, "top_blob.shape: (%d %d %d)\n", top_blob.c, top_blob.h, top_blob.w); } } // namespace mmdeploy