# MMPose Support [MMPose](https://github.com/open-mmlab/mmpose) is an open-source toolbox for pose estimation based on PyTorch. It is a part of the [OpenMMLab](https://openmmlab.com/) project. ## MMPose installation tutorial Please refer to [official installation guide](https://mmpose.readthedocs.io/en/latest/install.html) to install the codebase. ## MMPose models support | Model | Task | ONNX Runtime | TensorRT | ncnn | PPLNN | OpenVINO | Model config | | :-------- | :------------ | :----------: | :------: | :--: | :---: | :------: | :-----------------------------------------------------------------------------------------: | | HRNet | PoseDetection | Y | Y | Y | N | Y | [config](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#hrnet-cvpr-2019) | | MSPN | PoseDetection | Y | Y | Y | N | Y | [config](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#mspn-arxiv-2019) | | LiteHRNet | PoseDetection | Y | Y | Y | N | Y | [config](https://mmpose.readthedocs.io/en/latest/papers/backbones.html#litehrnet-cvpr-2021) | ### Example ```bash python tools/deploy.py \ configs/mmpose/posedetection_tensorrt_static-256x192.py \ $MMPOSE_DIR/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \ $MMPOSE_DIR/checkpoints/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \ $MMDEPLOY_DIR/demo/resources/human-pose.jpg \ --work-dir work-dirs/mmpose/topdown/hrnet/trt \ --device cuda ``` Note - Usually, mmpose models need some extra information for the input image, but we can't get it directly. So, when exporting the model, you can use `$MMDEPLOY_DIR/demo/resources/human-pose.jpg` as input.