## TensorRT Ops
- [TensorRT Ops](#tensorrt-ops)
- [TRTBatchedNMS](#trtbatchednms)
- [Description](#description)
- [Parameters](#parameters)
- [Inputs](#inputs)
- [Outputs](#outputs)
- [Type Constraints](#type-constraints)
- [grid_sampler](#grid_sampler)
- [Description](#description-1)
- [Parameters](#parameters-1)
- [Inputs](#inputs-1)
- [Outputs](#outputs-1)
- [Type Constraints](#type-constraints-1)
- [MMCVInstanceNormalization](#mmcvinstancenormalization)
- [Description](#description-2)
- [Parameters](#parameters-2)
- [Inputs](#inputs-2)
- [Outputs](#outputs-2)
- [Type Constraints](#type-constraints-2)
- [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d)
- [Description](#description-3)
- [Parameters](#parameters-3)
- [Inputs](#inputs-3)
- [Outputs](#outputs-3)
- [Type Constraints](#type-constraints-3)
- [MMCVMultiLevelRoiAlign](#mmcvmultilevelroialign)
- [Description](#description-4)
- [Parameters](#parameters-4)
- [Inputs](#inputs-4)
- [Outputs](#outputs-4)
- [Type Constraints](#type-constraints-4)
- [MMCVRoIAlign](#mmcvroialign)
- [Description](#description-5)
- [Parameters](#parameters-5)
- [Inputs](#inputs-5)
- [Outputs](#outputs-5)
- [Type Constraints](#type-constraints-5)
- [ScatterND](#scatternd)
- [Description](#description-6)
- [Parameters](#parameters-6)
- [Inputs](#inputs-6)
- [Outputs](#outputs-6)
- [Type Constraints](#type-constraints-6)
- [TRTBatchedRotatedNMS](#trtbatchedrotatednms)
- [Description](#description-7)
- [Parameters](#parameters-7)
- [Inputs](#inputs-7)
- [Outputs](#outputs-7)
- [Type Constraints](#type-constraints-7)
- [GridPriorsTRT](#gridpriorstrt)
- [Description](#description-8)
- [Parameters](#parameters-8)
- [Inputs](#inputs-8)
- [Outputs](#outputs-8)
- [Type Constraints](#type-constraints-8)
- [ScaledDotProductAttentionTRT](#scaleddotproductattentiontrt)
- [Description](#description-9)
- [Parameters](#parameters-9)
- [Inputs](#inputs-9)
- [Outputs](#outputs-9)
- [Type Constraints](#type-constraints-9)
- [GatherTopk](#gathertopk)
- [Description](#description-10)
- [Parameters](#parameters-10)
- [Inputs](#inputs-10)
- [Outputs](#outputs-10)
- [Type Constraints](#type-constraints-10)
### TRTBatchedNMS
#### Description
Batched NMS with a fixed number of output bounding boxes.
#### Parameters
| Type | Parameter | Description |
| ------- | --------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `int` | `background_label_id` | The label ID for the background class. If there is no background class, set it to `-1`. |
| `int` | `num_classes` | The number of classes. |
| `int` | `topK` | The number of bounding boxes to be fed into the NMS step. |
| `int` | `keepTopK` | The number of total bounding boxes to be kept per-image after the NMS step. Should be less than or equal to the `topK` value. |
| `float` | `scoreThreshold` | The scalar threshold for score (low scoring boxes are removed). |
| `float` | `iouThreshold` | The scalar threshold for IoU (new boxes that have high IoU overlap with previously selected boxes are removed). |
| `int` | `isNormalized` | Set to `false` if the box coordinates are not normalized, meaning they are not in the range `[0,1]`. Defaults to `true`. |
| `int` | `clipBoxes` | Forcibly restrict bounding boxes to the normalized range `[0,1]`. Only applicable if `isNormalized` is also `true`. Defaults to `true`. |
#### Inputs
- inputs[0]: T
- boxes; 4-D tensor of shape (N, num_boxes, num_classes, 4), where N is the batch size; `num_boxes` is the number of boxes; `num_classes` is the number of classes, which could be 1 if the boxes are shared between all classes.
- inputs[1]: T
- scores; 4-D tensor of shape (N, num_boxes, 1, num_classes).
#### Outputs
- outputs[0]: T
- dets; 3-D tensor of shape (N, valid_num_boxes, 5), `valid_num_boxes` is the number of boxes after NMS. For each row `dets[i,j,:] = [x0, y0, x1, y1, score]`
- outputs[1]: tensor(int32, Linear)
- labels; 2-D tensor of shape (N, valid_num_boxes).
#### Type Constraints
- T:tensor(float32, Linear)
### grid_sampler
#### Description
Perform sample from `input` with pixel locations from `grid`.
#### Parameters
| Type | Parameter | Description |
| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) |
| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) |
| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. |
#### Inputs
- inputs[0]: T
- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
- inputs[1]: T
- Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output.
#### Outputs
- outputs[0]: T
- Output feature; 4-D tensor of shape (N, C, outH, outW).
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVInstanceNormalization
#### Description
Carry out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.
y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel.
#### Parameters
| Type | Parameter | Description |
| ------- | --------- | -------------------------------------------------------------------- |
| `float` | `epsilon` | The epsilon value to use to avoid division by zero. Default is 1e-05 |
#### Inputs
- input: T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- scale: T
- The input 1-dimensional scale tensor of size C.
- B: T
- The input 1-dimensional bias tensor of size C.
#### Outputs
- output: T
- The output tensor of the same shape as input.
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVModulatedDeformConv2d
#### Description
Perform Modulated Deformable Convolution on input feature. Read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail.
#### Parameters
| Type | Parameter | Description |
| -------------- | ------------------ | ------------------------------------------------------------------------------------- |
| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) |
| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) |
| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) |
| `int` | `deformable_group` | Groups of deformable offset. |
| `int` | `group` | Split input into groups. `input_channel` should be divisible by the number of groups. |
#### Inputs
- inputs[0]: T
- Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
- inputs[1]: T
- Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
- inputs[2]: T
- Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.
- inputs[3]: T
- Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
- inputs[4]: T, optional
- Input weight; 1-D tensor of shape (output_channel).
#### Outputs
- outputs[0]: T
- Output feature; 4-D tensor of shape (N, output_channel, outH, outW).
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVMultiLevelRoiAlign
#### Description
Perform RoIAlign on features from multiple levels. Used in bbox_head of most two-stage detectors.
#### Parameters
| Type | Parameter | Description |
| ---------------- | ------------------ | ------------------------------------------------------------------------------------------------------------- |
| `int` | `output_height` | height of output roi. |
| `int` | `output_width` | width of output roi. |
| `list of floats` | `featmap_strides` | feature map stride of each level. |
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `float` | `roi_scale_factor` | RoIs will be scaled by this factor before RoI Align. |
| `int` | `finest_scale` | Scale threshold of mapping to level 0. Default: 56. |
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
#### Inputs
inputs[0]: T
RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...].
inputs[1~]: T
Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
#### Outputs
- outputs[0]: T
- RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
-
#### Type Constraints
- T:tensor(float32, Linear)
### MMCVRoIAlign
#### Description
Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.
#### Parameters
| Type | Parameter | Description |
| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- |
| `int` | `output_height` | height of output roi |
| `int` | `output_width` | width of output roi |
| `float` | `spatial_scale` | used to scale the input boxes |
| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. |
| `str` | `mode` | pooling mode in each bin. `avg` or `max` |
| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. |
#### Inputs
- inputs[0]: T
- Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
- inputs[1]: T
- RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of inputs[0].
#### Outputs
- outputs[0]: T
- RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element output[0][r-1] is a pooled feature map corresponding to the r-th RoI inputs[1][r-1].
-
#### Type Constraints
- T:tensor(float32, Linear)
### ScatterND
#### Description
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1, and `updates` tensor of rank q + r - indices.shape\[-1\] - 1. The output of the operation is produced by creating a copy of the input `data`, and then updating its value to values specified by updates at specific index positions specified by `indices`. Its output shape is the same as the shape of `data`. Note that `indices` should not have duplicate entries. That is, two or more updates for the same index-location is not supported.
The `output` is calculated via the following equation:
```python
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
```
#### Parameters
None
#### Inputs
- inputs[0]: T
- Tensor of rank r>=1.
- inputs[1]: tensor(int32, Linear)
- Tensor of rank q>=1.
- inputs[2]: T
- Tensor of rank q + r - indices_shape[-1] - 1.
#### Outputs
- outputs[0]: T
- Tensor of rank r >= 1.
#### Type Constraints
- T:tensor(float32, Linear), tensor(int32, Linear)
### TRTBatchedRotatedNMS
#### Description
Batched rotated NMS with a fixed number of output bounding boxes.
#### Parameters
| Type | Parameter | Description |
| ------- | --------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `int` | `background_label_id` | The label ID for the background class. If there is no background class, set it to `-1`. |
| `int` | `num_classes` | The number of classes. |
| `int` | `topK` | The number of bounding boxes to be fed into the NMS step. |
| `int` | `keepTopK` | The number of total bounding boxes to be kept per-image after the NMS step. Should be less than or equal to the `topK` value. |
| `float` | `scoreThreshold` | The scalar threshold for score (low scoring boxes are removed). |
| `float` | `iouThreshold` | The scalar threshold for IoU (new boxes that have high IoU overlap with previously selected boxes are removed). |
| `int` | `isNormalized` | Set to `false` if the box coordinates are not normalized, meaning they are not in the range `[0,1]`. Defaults to `true`. |
| `int` | `clipBoxes` | Forcibly restrict bounding boxes to the normalized range `[0,1]`. Only applicable if `isNormalized` is also `true`. Defaults to `true`. |
#### Inputs
- inputs[0]: T
- boxes; 4-D tensor of shape (N, num_boxes, num_classes, 5), where N is the batch size; `num_boxes` is the number of boxes; `num_classes` is the number of classes, which could be 1 if the boxes are shared between all classes.
- inputs[1]: T
- scores; 4-D tensor of shape (N, num_boxes, 1, num_classes).
#### Outputs
- outputs[0]: T
- dets; 3-D tensor of shape (N, valid_num_boxes, 6), `valid_num_boxes` is the number of boxes after NMS. For each row `dets[i,j,:] = [x0, y0, width, height, theta, score]`
- outputs[1]: tensor(int32, Linear)
- labels; 2-D tensor of shape (N, valid_num_boxes).
#### Type Constraints
- T:tensor(float32, Linear)
### GridPriorsTRT
#### Description
Generate the anchors for object detection task.
#### Parameters
| Type | Parameter | Description |
| ----- | ---------- | --------------------------------- |
| `int` | `stride_w` | The stride of the feature width. |
| `int` | `stride_h` | The stride of the feature height. |
#### Inputs
- inputs[0]: T
- The base anchors; 2-D tensor with shape [num_base_anchor, 4].
- inputs[1]: TAny
- height provider; 1-D tensor with shape [featmap_height]. The data will never been used.
- inputs[2]: TAny
- width provider; 1-D tensor with shape [featmap_width]. The data will never been used.
#### Outputs
- outputs[0]: T
- output anchors; 2-D tensor of shape (num_base_anchor*featmap_height*featmap_widht, 4).
#### Type Constraints
- T:tensor(float32, Linear)
- TAny: Any
### ScaledDotProductAttentionTRT
#### Description
Dot product attention used to support multihead attention, read [Attention Is All You Need](https://arxiv.org/abs/1706.03762?context=cs) for more detail.
#### Parameters
None
#### Inputs
- inputs[0]: T
- query; 3-D tensor with shape [batch_size, sequence_length, embedding_size].
- inputs[1]: T
- key; 3-D tensor with shape [batch_size, sequence_length, embedding_size].
- inputs[2]: T
- value; 3-D tensor with shape [batch_size, sequence_length, embedding_size].
- inputs[3]: T
- mask; 2-D/3-D tensor with shape [sequence_length, sequence_length] or [batch_size, sequence_length, sequence_length]. optional.
#### Outputs
- outputs[0]: T
- 3-D tensor of shape [batch_size, sequence_length, embedding_size]. `softmax(q@k.T)@v`
- outputs[1]: T
- 3-D tensor of shape [batch_size, sequence_length, sequence_length]. `softmax(q@k.T)`
#### Type Constraints
- T:tensor(float32, Linear)
### GatherTopk
#### Description
TensorRT 8.2~8.4 would give unexpected result for multi-index gather.
```python
data[batch_index, bbox_index, ...]
```
Read [this](https://github.com/NVIDIA/TensorRT/issues/2299) for more details.
#### Parameters
None
#### Inputs
- inputs[0]: T
- Tensor to be gathered, with shape (A0, ..., An, G0, C0, ...).
- inputs[1]: tensor(int32, Linear)
- Tensor of index. with shape (A0, ..., An, G1)
#### Outputs
- outputs[0]: T
- Tensor of output. With shape (A0, ..., An, G1, C0, ...)
#### Type Constraints
- T:tensor(float32, Linear), tensor(int32, Linear)