// Copyright (c) OpenMMLab. All rights reserved. #include "catch.hpp" #include "mmdeploy/core/mat.h" #include "mmdeploy/core/utils/device_utils.h" #include "mmdeploy/preprocess/transform/transform.h" #include "opencv2/imgcodecs/imgcodecs.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv_utils.h" #include "test_resource.h" #include "test_utils.h" using namespace mmdeploy; using namespace framework; using namespace mmdeploy::test; using namespace std; void TestNormalize(const Value &cfg, const cv::Mat &mat) { auto gResource = MMDeployTestResources::Get(); for (auto const &device_name : gResource.device_names()) { Device device{device_name.c_str()}; Stream stream{device}; auto transform = CreateTransform(cfg, device, stream); REQUIRE(transform != nullptr); vector mean; vector std; for (auto &v : cfg["mean"]) { mean.push_back(v.get()); } for (auto &v : cfg["std"]) { std.push_back(v.get()); } bool to_rgb = cfg.value("to_rgb", false); auto _mat = mat.clone(); auto ref_mat = mmdeploy::cpu::Normalize(_mat, mean, std, to_rgb); auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}}); REQUIRE(!res.has_error()); auto res_tensor = res.value()["img"].get(); REQUIRE(res_tensor.device() == device); REQUIRE(res_tensor.desc().data_type == DataType::kFLOAT); REQUIRE(ImageNormCfg(res.value(), "mean") == mean); REQUIRE(ImageNormCfg(res.value(), "std") == std); Device kHost{"cpu"}; auto host_tensor = MakeAvailableOnDevice(res_tensor, kHost, stream); REQUIRE(stream.Wait()); auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value()); REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat)); } } TEST_CASE("transform Normalize", "[normalize]") { auto gResource = MMDeployTestResources::Get(); auto img_list = gResource.LocateImageResources("transform"); REQUIRE(!img_list.empty()); auto img_path = img_list.front(); cv::Mat bgr_mat = cv::imread(img_path); cv::Mat gray_mat; cv::Mat float_bgr_mat; cv::Mat float_gray_mat; cv::cvtColor(bgr_mat, gray_mat, cv::COLOR_BGR2GRAY); bgr_mat.convertTo(float_bgr_mat, CV_32FC3); gray_mat.convertTo(float_gray_mat, CV_32FC1); SECTION("cpu vs gpu: 3 channel mat") { bool to_rgb = true; Value cfg{{"type", "Normalize"}, {"mean", {123.675, 116.28, 103.53}}, {"std", {58.395, 57.12, 57.375}}, {"to_rgb", to_rgb}}; vector mats{bgr_mat, float_bgr_mat}; for (auto &mat : mats) { TestNormalize(cfg, mat); } } SECTION("cpu vs gpu: 3 channel mat, to_rgb false") { bool to_rgb = false; Value cfg{{"type", "Normalize"}, {"mean", {123.675, 116.28, 103.53}}, {"std", {58.395, 57.12, 57.375}}, {"to_rgb", to_rgb}}; vector mats{bgr_mat, float_bgr_mat}; for (auto &mat : mats) { TestNormalize(cfg, mat); } } SECTION("cpu vs gpu: 1 channel mat") { bool to_rgb = true; Value cfg{{"type", "Normalize"}, {"mean", {123.675}}, {"std", {58.395}}, {"to_rgb", to_rgb}}; vector mats{gray_mat, float_gray_mat}; for (auto &mat : mats) { TestNormalize(cfg, mat); } } }