# Copyright (c) OpenMMLab. All rights reserved. import importlib import os.path as osp import tempfile import pytest from mmengine import Config from mmdeploy.apis import torch2torchscript from mmdeploy.utils import IR, Backend from mmdeploy.utils.test import get_random_name ts_file = tempfile.NamedTemporaryFile(suffix='.pt').name input_name = get_random_name() output_name = get_random_name() def get_deploy_cfg(input_name, output_name): return Config( dict( ir_config=dict( type=IR.TORCHSCRIPT.value, input_names=[input_name], output_names=[output_name], input_shape=None), codebase_config=dict(type='mmedit', task='SuperResolution'), backend_config=dict(type=Backend.TORCHSCRIPT.value))) def get_model_cfg(): import mmengine file = 'tests/test_codebase/test_mmedit/data/model.py' model_cfg = mmengine.Config.fromfile(file) return model_cfg @pytest.mark.parametrize('input_name', [input_name]) @pytest.mark.parametrize('output_name', [output_name]) @pytest.mark.skipif( not importlib.util.find_spec('mmedit'), reason='requires mmedit') def test_torch2torchscript(input_name, output_name): import numpy as np deploy_cfg = get_deploy_cfg(input_name, output_name) torch2torchscript( np.random.randint(0, 255, (8, 8, 3)), '', ts_file, deploy_cfg, model_cfg=get_model_cfg(), device='cpu') assert osp.exists(ts_file)