// Copyright (c) OpenMMLab. All rights reserved. #include "topk.h" #include #include #include "../ncnn_ops_definer.h" namespace mmdeploy { using namespace ncnn; DEFINE_LAYER_CREATOR(TopK) DEFINE_NCNN_OPS(TopK, TopK) TopK::TopK() { one_blob_only = false; support_inplace = false; } int TopK::load_param(const ParamDict& pd) { axis = pd.get(0, -1); largest = pd.get(1, 1); sorted = pd.get(2, 1); keep_dims = pd.get(3, 1); return 0; } int TopK::forward(const std::vector& bottom_blobs, std::vector& top_blobs, const Option& opt) const { int dims = bottom_blobs[0].dims; int positive_axis = axis < 0 ? dims + axis : axis; int topk; if (bottom_blobs.size() == 2) { const Mat& topk_blob = bottom_blobs[1]; topk = (int)(topk_blob[0] + 0.5); } else if (bottom_blobs.size() == 1) { topk = 1; } else { fprintf(stderr, "topk input blobs should be 1 or 2, but not %ld\n", bottom_blobs.size()); return -103; } // To do: Cut the top_val_blob after unit test. And we should change them in // param files. // Adaptive outputs. For onnx TopK, we output 2 blobs, for ArgMax, we output // 1 blob. Mat& top_val_blob = top_blobs[0]; Mat& top_ind_blob = top_blobs.size() == 2 ? top_blobs[1] : top_val_blob; if (topk > 1) { // real topk if (keep_dims == 0) { fprintf(stderr, "real topk should not reduce dims!\n"); return -102; } if (dims == 1 && positive_axis == 0) { if (topk > bottom_blobs[0].w) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; const float* ptr = bottom_blobs[0]; std::vector > vec; vec.resize(bottom_blobs[0].w); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(ptr[i], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(ptr[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } float* valptr = top_val_blob; float* indptr = top_ind_blob; if (sorted == 1) { for (int i = 0; i < topk; i++) { valptr[i] = vec[i].first; indptr[i] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); // pair comparison if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0][i] > valtarget) { valptr[cur] = bottom_blobs[0][i]; indptr[cur] = i; cur++; } else if (bottom_blobs[0][i] == valtarget && i <= indtarget) { valptr[cur] = bottom_blobs[0][i]; indptr[cur] = i; cur++; } } } else { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0][i] < valtarget) { valptr[cur] = bottom_blobs[0][i]; indptr[cur] = i; cur++; } else if (bottom_blobs[0][i] == valtarget && i <= indtarget) { valptr[cur] = bottom_blobs[0][i]; indptr[cur] = i; cur++; } } } } } if (dims == 2 && positive_axis == 0) { if (topk > bottom_blobs[0].h) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; for (int col = 0; col < bottom_blobs[0].w; col++) { std::vector > vec; vec.resize(bottom_blobs[0].h); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = std::make_pair(bottom_blobs[0].row(i)[col], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = std::make_pair(bottom_blobs[0].row(i)[col], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } if (sorted == 1) { for (int i = 0; i < topk; i++) { top_val_blob.row(i)[col] = vec[i].first; top_ind_blob.row(i)[col] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].h; i++) { if (cur >= topk) break; if (bottom_blobs[0].row(i)[col] > valtarget) { top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col]; top_ind_blob.row(cur)[col] = i; cur++; } else if (bottom_blobs[0].row(i)[col] == valtarget && i <= indtarget) { top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col]; top_ind_blob.row(cur)[col] = i; cur++; } } } else { for (int i = 0; i < bottom_blobs[0].h; i++) { if (cur >= topk) break; if (bottom_blobs[0].row(i)[col] < valtarget) { top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col]; top_ind_blob.row(cur)[col] = i; cur++; } else if (bottom_blobs[0].row(i)[col] == valtarget && i <= indtarget) { top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col]; top_ind_blob.row(cur)[col] = i; cur++; } } } } else { fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted); return -100; } } } if (dims == 2 && positive_axis == 1) { if (topk > bottom_blobs[0].w) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; for (int r = 0; r < bottom_blobs[0].h; r++) { std::vector > vec; vec.resize(bottom_blobs[0].w); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(bottom_blobs[0].row(r)[i], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(bottom_blobs[0].row(r)[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } if (sorted == 1) { for (int i = 0; i < topk; i++) { top_val_blob.row(r)[i] = vec[i].first; top_ind_blob.row(r)[i] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0].row(r)[i] > valtarget) { top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i]; top_ind_blob.row(r)[cur] = i; cur++; } else if (bottom_blobs[0].row(r)[i] == valtarget && i <= indtarget) { top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i]; top_ind_blob.row(r)[cur] = i; cur++; } } } else { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0].row(r)[i] < valtarget) { top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i]; top_ind_blob.row(r)[cur] = i; cur++; } else if (bottom_blobs[0].row(r)[i] == valtarget && i <= indtarget) { top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i]; top_ind_blob.row(r)[cur] = i; cur++; } } } } else { fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted); return -100; } } } if (dims == 3 && positive_axis == 0) { if (topk > bottom_blobs[0].c) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; for (int r = 0; r < bottom_blobs[0].h; r++) { for (int col = 0; col < bottom_blobs[0].w; col++) { std::vector > vec; vec.resize(bottom_blobs[0].c); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].c; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(i).row(r)[col], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].c; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(i).row(r)[col], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } if (sorted == 1) { for (int i = 0; i < topk; i++) { top_val_blob.channel(i).row(r)[col] = vec[i].first; top_ind_blob.channel(i).row(r)[col] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].c; i++) { if (cur >= topk) break; if (bottom_blobs[0].channel(i).row(r)[col] > valtarget) { top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col]; top_ind_blob.channel(cur).row(r)[col] = i; cur++; } else if (bottom_blobs[0].channel(i).row(r)[col] == valtarget && i <= indtarget) { top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col]; top_ind_blob.channel(cur).row(r)[col] = i; cur++; } } } else { for (int i = 0; i < bottom_blobs[0].c; i++) { if (cur >= topk) break; if (bottom_blobs[0].channel(i).row(r)[col] < valtarget) { top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col]; top_ind_blob.channel(cur).row(r)[col] = i; cur++; } else if (bottom_blobs[0].channel(i).row(r)[col] == valtarget && i <= indtarget) { top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col]; top_ind_blob.channel(cur).row(r)[col] = i; cur++; } } } } else { fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted); return -100; } } } } if (dims == 3 && positive_axis == 1) { if (topk > bottom_blobs[0].h) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; for (int page = 0; page < bottom_blobs[0].c; page++) { for (int col = 0; col < bottom_blobs[0].w; col++) { std::vector > vec; vec.resize(bottom_blobs[0].h); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(i)[col], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(i)[col], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } if (sorted == 1) { for (int i = 0; i < topk; i++) { top_val_blob.channel(page).row(i)[col] = vec[i].first; top_ind_blob.channel(page).row(i)[col] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); for (int i = 0; i < bottom_blobs[0].h; i++) { if (cur >= topk) break; if (largest == 1) { if (bottom_blobs[0].channel(page).row(i)[col] > valtarget) { top_val_blob.channel(page).row(cur)[col] = bottom_blobs[0].channel(page).row(i)[col]; top_ind_blob.channel(page).row(cur)[col] = i; cur++; } else if (bottom_blobs[0].channel(page).row(i)[col] == valtarget && i <= indtarget) { top_val_blob.channel(page).row(cur)[col] = bottom_blobs[0].channel(page).row(i)[col]; top_ind_blob.channel(page).row(cur)[col] = i; cur++; } } else { if (bottom_blobs[0].channel(page).row(i)[col] < valtarget) { top_val_blob.channel(page).row(cur)[col] = bottom_blobs[0].channel(page).row(i)[col]; top_ind_blob.channel(page).row(cur)[col] = i; cur++; } else if (bottom_blobs[0].channel(page).row(i)[col] == valtarget && i <= indtarget) { top_val_blob.channel(page).row(cur)[col] = bottom_blobs[0].channel(page).row(i)[col]; top_ind_blob.channel(page).row(cur)[col] = i; cur++; } } } } else { fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted); return -100; } } } } if (dims == 3 && positive_axis == 2) { if (topk > bottom_blobs[0].w) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; top_ind_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; for (int page = 0; page < bottom_blobs[0].c; page++) { for (int r = 0; r < bottom_blobs[0].h; r++) { std::vector > vec; vec.resize(bottom_blobs[0].w); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(r)[i], -i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); } else if (largest == 0) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(r)[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::less >()); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } if (sorted == 1) { for (int i = 0; i < topk; i++) { top_val_blob.channel(page).row(r)[i] = vec[i].first; top_ind_blob.channel(page).row(r)[i] = abs(vec[i].second); } } else if (sorted == 0) { int cur = 0; float valtarget = vec[topk - 1].first; int indtarget = (int)(abs(vec[topk - 1].second) + 0.5); if (largest == 1) { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0].channel(page).row(r)[i] > valtarget) { top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i]; top_ind_blob.channel(page).row(r)[cur] = i; cur++; } else if (bottom_blobs[0].channel(page).row(r)[i] == valtarget && i <= indtarget) { top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i]; top_ind_blob.channel(page).row(r)[cur] = i; cur++; } } } else { for (int i = 0; i < bottom_blobs[0].w; i++) { if (cur >= topk) break; if (bottom_blobs[0].channel(page).row(r)[i] < valtarget) { top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i]; top_ind_blob.channel(page).row(r)[cur] = i; cur++; } else if (bottom_blobs[0].channel(page).row(r)[i] == valtarget && i <= indtarget) { top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i]; top_ind_blob.channel(page).row(r)[cur] = i; cur++; } } } } else { fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted); return -100; } } } } } else { if (topk <= 0) { fprintf(stderr, "topk should not <= 0!\n"); return -102; } if (dims == 1 && positive_axis == 0) { if (topk > bottom_blobs[0].w) { fprintf(stderr, "topk should not greater than total items!\n"); return -100; } top_val_blob.create(topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } const float* ptr = bottom_blobs[0]; std::vector vec; vec.resize(bottom_blobs[0].w); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = ptr[i]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[0] = *index_iter; if (top_blobs.size() == 2) indptr[0] = std::distance(vec.begin(), index_iter); else valptr[0] = std::distance(vec.begin(), index_iter); // replace with index } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[0] = *index_iter; if (top_blobs.size() == 2) indptr[0] = std::distance(vec.begin(), index_iter); else valptr[0] = std::distance(vec.begin(), index_iter); // replace with index } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } if (dims == 2 && positive_axis == 0) { if (keep_dims == 1) { top_val_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } else { top_val_blob.create(bottom_blobs[0].w, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } const float* ptr = bottom_blobs[0]; std::vector vec; vec.resize(bottom_blobs[0].h); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int col = 0; col < bottom_blobs[0].w; col++) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = ptr[i * bottom_blobs[0].w + col]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[col] = *index_iter; if (top_blobs.size() == 2) indptr[col] = std::distance(vec.begin(), index_iter); else valptr[col] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[col] = *index_iter; if (top_blobs.size() == 2) indptr[col] = std::distance(vec.begin(), index_iter); else valptr[col] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } if (dims == 2 && positive_axis == 1) { if (keep_dims == 1) { top_val_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } else { top_val_blob.create(bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } const float* ptr = bottom_blobs[0]; std::vector vec; vec.resize(bottom_blobs[0].w); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int r = 0; r < bottom_blobs[0].h; r++) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = ptr[r * bottom_blobs[0].w + i]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[r] = *index_iter; if (top_blobs.size() == 2) indptr[r] = std::distance(vec.begin(), index_iter); else valptr[r] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[r] = *index_iter; if (top_blobs.size() == 2) indptr[r] = std::distance(vec.begin(), index_iter); else valptr[r] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } if (dims == 3 && positive_axis == 0) { if (keep_dims == 1) { top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } else { top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } } const float* ptr = bottom_blobs[0]; std::vector vec; vec.resize(bottom_blobs[0].c); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int r = 0; r < bottom_blobs[0].h; r++) { for (int col = 0; col < bottom_blobs[0].w; col++) { for (int i = 0; i < bottom_blobs[0].c; i++) { ptr = bottom_blobs[0].channel(i); vec[i] = ptr[r * bottom_blobs[0].w + col]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[r * top_val_blob.w + col] = *index_iter; if (top_blobs.size() == 2) indptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); else valptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[r * top_val_blob.w + col] = *index_iter; if (top_blobs.size() == 2) indptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); else valptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } } if (dims == 3 && positive_axis == 1) { if (keep_dims == 1) { top_val_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } std::vector vec; vec.resize(bottom_blobs[0].h); for (int page = 0; page < bottom_blobs[0].c; page++) { const float* ptr = bottom_blobs[0].channel(page); float* valptr = top_val_blob.channel(page); float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob.channel(page); for (int col = 0; col < bottom_blobs[0].w; col++) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = ptr[i * bottom_blobs[0].w + col]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[col] = *index_iter; if (top_blobs.size() == 2) indptr[col] = std::distance(vec.begin(), index_iter); else valptr[col] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[col] = *index_iter; if (top_blobs.size() == 2) indptr[col] = std::distance(vec.begin(), index_iter); else valptr[col] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } } else { top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } std::vector vec; vec.resize(bottom_blobs[0].h); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int page = 0; page < bottom_blobs[0].c; page++) { const float* ptr = bottom_blobs[0].channel(page); for (int col = 0; col < bottom_blobs[0].w; col++) { for (int i = 0; i < bottom_blobs[0].h; i++) { vec[i] = ptr[i * bottom_blobs[0].w + col]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[page * top_val_blob.w + col] = *index_iter; if (top_blobs.size() == 2) indptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); else valptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[page * top_val_blob.w + col] = *index_iter; if (top_blobs.size() == 2) indptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); else valptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } } } if (dims == 3 && positive_axis == 2) { if (keep_dims == 1) { top_val_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } std::vector vec; vec.resize(bottom_blobs[0].w); for (int page = 0; page < bottom_blobs[0].c; page++) { const float* ptr = bottom_blobs[0].channel(page); float* valptr = top_val_blob.channel(page); float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob.channel(page); for (int r = 0; r < bottom_blobs[0].h; r++) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = ptr[r * bottom_blobs[0].w + i]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[r] = *index_iter; if (top_blobs.size() == 2) indptr[r] = std::distance(vec.begin(), index_iter); else valptr[r] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[r] = *index_iter; if (top_blobs.size() == 2) indptr[r] = std::distance(vec.begin(), index_iter); else valptr[r] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } } else { top_val_blob.create(bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_val_blob.empty()) return -100; if (top_blobs.size() == 2) { top_ind_blob.create(bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator); if (top_ind_blob.empty()) return -100; } std::vector vec; vec.resize(bottom_blobs[0].w); float* valptr = top_val_blob; float* indptr; if (top_blobs.size() == 2) indptr = top_ind_blob; for (int page = 0; page < bottom_blobs[0].c; page++) { const float* ptr = bottom_blobs[0].channel(page); for (int r = 0; r < bottom_blobs[0].h; r++) { for (int i = 0; i < bottom_blobs[0].w; i++) { vec[i] = ptr[r * bottom_blobs[0].w + i]; } if (largest == 1) { auto index_iter = std::max_element(vec.begin(), vec.end()); valptr[page * top_val_blob.w + r] = *index_iter; if (top_blobs.size() == 2) indptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter); else valptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter); } else if (largest == 0) { auto index_iter = std::min_element(vec.begin(), vec.end()); valptr[page * top_val_blob.w + r] = *index_iter; if (top_blobs.size() == 2) indptr[page * top_val_blob.w + r] = std::distance(vec.begin(), index_iter); else valptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter); } else { fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest); return -100; } } } } } } return 0; } } // namespace mmdeploy