# Quantization test result Currently mmdeploy support ncnn quantization ## Quantize with ncnn ### mmcls | model | dataset | fp32 top-1 (%) | int8 top-1 (%) | | :--------------------------------------------------------------------------------------------------------------------------: | :---------: | :------------: | :------------: | | [ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py) | Cifar10 | 94.82 | 94.83 | | [ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | ImageNet-1k | 77.90 | 78.20\* | | [MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | ImageNet-1k | 71.86 | 71.43\* | | [HRNet-W18\*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | ImageNet-1k | 76.75 | 76.25\* | Note: - Because of the large amount of imagenet-1k data and ncnn has not released Vulkan int8 version, only part of the test set (4000/50000) is used. - The accuracy will vary after quantization, and it is normal for the classification model to increase by less than 1%. ### OCR detection | model | dataset | fp32 hmean | int8 hmean | | :--------------------------------------------------------------------------------------------------------------------------: | :-------: | :--------: | :------------: | | [PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | ICDAR2015 | 0.795 | 0.792 @thr=0.9 | | [TextSnake](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py) | CTW1500 | 0.817 | 0.818 | Note: [mmocr](https://github.com/open-mmlab/mmocr) Uses 'shapely' to compute IoU, which results in a slight difference in accuracy ### Pose detection | model | dataset | fp32 AP | int8 AP | | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------: | :-----: | :-----: | | [Hourglass](https://github.com/open-mmlab/mmpose/blob/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hourglass52_coco_256x256.py) | COCO2017 | 0.717 | 0.713 | | [S-ViPNAS-MobileNetV3](https://github.com/open-mmlab/mmpose/blob/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_mbv3_coco_256x192.py) | COCO2017 | 0.687 | 0.683 | | [S-ViPNAS-Res50](https://github.com/open-mmlab/mmpose/blob/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_res50_coco_256x192.py) | COCO2017 | 0.701 | 0.696 | | [S-ViPNAS-MobileNetV3](https://github.com/open-mmlab/mmpose/blob/master/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/vipnas_mbv3_coco_wholebody_256x192.py) | COCO Wholebody | 0.459 | 0.445 | | [S-ViPNAS-Res50](https://github.com/open-mmlab/mmpose/blob/master/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/vipnas_res50_coco_wholebody_256x192.py) | COCO Wholebody | 0.484 | 0.476 | | [S-ViPNAS-MobileNetV3_dark](https://github.com/open-mmlab/mmpose/blob/master/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/vipnas_mbv3_coco_wholebody_256x192_dark.py) | COCO Wholebody | 0.499 | 0.481 | | [S-ViPNAS-Res50_dark](https://github.com/open-mmlab/mmpose/blob/master/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/vipnas_res50_coco_wholebody_256x192_dark.py) | COCO Wholebody | 0.520 | 0.511 | Note: MMPose models are tested with `flip_test` explicitly set to `False` in model configs. ### Super Resolution | model | dataset | fp32 PSNR/SSIM | int8 PSNR/SSIM | | :-----------------------------------------------------------------------------------------------------------------: | :-----: | :------------: | :------------: | | [EDSRx2](https://github.com/open-mmlab/mmediting/blob/master/configs/restorers/edsr/edsr_x2c64b16_g1_300k_div2k.py) | Set5 | 35.7733/0.9365 | 35.4266/0.9334 | | [EDSRx4](https://github.com/open-mmlab/mmediting/blob/master/configs/restorers/edsr/edsr_x4c64b16_g1_300k_div2k.py) | Set5 | 30.2194/0.8498 | 29.9340/0.8409 | ### mmseg | model | dataset | fp32 mIoU | int8 mIoU | | :----------------------------------------------------------------------------------------------------------------------------: | :--------: | :-------: | :-------: | | [Fast-SCNN](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py) | cityscapes | 70.96 | 70.24 | Note: - Int8 models of the Fast-SCNN requires ncnnoptimize. - NCNN will extract 512 images from the train as a calibration dataset