## ONNX Runtime Support ### Introduction of ONNX Runtime **ONNX Runtime** is a cross-platform inferencing and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information. ### Installation *Please note that only **onnxruntime>=1.8.1** of CPU version on Linux platform is supported by now.* - Install ONNX Runtime python package ```bash pip install onnxruntime==1.8.1 ``` ### Build custom ops #### Prerequisite - Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below: ```bash wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz tar -zxvf onnxruntime-linux-x64-1.8.1.tgz cd onnxruntime-linux-x64-1.8.1 export ONNXRUNTIME_DIR=$(pwd) export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH ``` Note: - If you want to save onnxruntime env variables to bashrc, you could run ```bash echo '# set env for onnxruntime' >> ~/.bashrc echo "export ONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}" >> ~/.bashrc echo 'export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` #### Build on Linux ```bash cd ${MMDEPLOY_DIR} # To MMDeploy root directory mkdir build cd build cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} .. make -j10 ``` ### How to convert a model - You could follow the instructions of tutorial [How to convert model](../tutorials/how_to_convert_model.md) ### List of supported custom ops | Operator | CPU | GPU | MMDeploy Releases | |:-----------------------------------------------------------------------------|:---:|:---:|:------------------| | [RoIAlign](../ops/onnxruntime.md#roialign) | Y | N | master | | [grid_sampler](../ops/onnxruntime.md#grid_sampler) | Y | N | master | | [MMCVModulatedDeformConv2d](../ops/onnxruntime.md#mmcvmodulateddeformconv2d) | Y | N | master | ### How to add a new custom op #### Reminder - The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime. - The custom operator should be able to be exported to ONNX. #### Main procedures Take custom operator `roi_align` for example. 1. Create a `roi_align` directory in ONNX Runtime source directory `backend_ops/onnxruntime/` 2. Add header and source file into `roi_align` directory `backend_ops/onnxruntime/roi_align/` 3. Add unit test into `tests/test_ops/test_ops.py` Check [here](../../tests/test_ops/test_ops.py) for examples. **Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy.** :nerd_face: ### FAQs - None ### References - [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md) - [How to add a custom operator/kernel in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/docs/AddingCustomOp.md)