// Copyright (c) OpenMMLab. All rights reserved. #include "ncnn_net.h" #include "core/logger.h" #include "core/model.h" #include "core/utils/formatter.h" #include "ncnn_ops_register.h" namespace mmdeploy { NCNNNet::~NCNNNet() {} Result ncnn_status(int code) { if (code == 0) { return success(); } return Status(eFail); } Result NCNNNet::Init(const Value& args) { auto& context = args["context"]; device_ = context["device"].get(); stream_ = context["stream"].get(); if (!device_.is_host()) { return Status(eNotSupported); } auto name = args["name"].get(); auto model = context["model"].get(); OUTCOME_TRY(auto config, model.GetModelConfig(name)); OUTCOME_TRY(params_, model.ReadFile(config.net)); OUTCOME_TRY(weights_, model.ReadFile(config.weights)); register_mmdeploy_custom_layers(net_); OUTCOME_TRY(ncnn_status(net_.load_param_mem(params_.c_str()))); net_.load_model(reinterpret_cast(weights_.data())); input_indices_ = net_.input_indexes(); for (const auto& x : net_.input_names()) { input_tensors_.emplace_back(TensorDesc{ Device("cpu"), DataType::kFLOAT, {}, x, }); } output_indices_ = net_.output_indexes(); for (const auto& x : net_.output_names()) { output_tensors_.emplace_back(TensorDesc{ Device("cpu"), DataType::kFLOAT, {}, x, }); } return success(); } Result NCNNNet::Deinit() { return success(); } Result NCNNNet::Reshape(Span input_shapes) { for (size_t i = 0; i < input_shapes.size(); ++i) { input_tensors_[i].Reshape(input_shapes[i]); } return success(); } Result> NCNNNet::GetInputTensors() { return input_tensors_; } Result> NCNNNet::GetOutputTensors() { return output_tensors_; } // TODO: discuss a policy for batch processing Result NCNNNet::Forward() { auto extractor = net_.create_extractor(); OUTCOME_TRY(stream_.Wait()); std::vector inputs(input_indices_.size()); for (size_t i = 0; i < input_indices_.size(); ++i) { auto& tensor = input_tensors_[i]; auto shape = tensor.shape(); assert(shape[0] == 1); inputs[i] = ncnn::Mat(shape[3], shape[2], shape[1], tensor.data()); OUTCOME_TRY(ncnn_status(extractor.input(input_indices_[i], inputs[i]))); } std::vector outputs(output_indices_.size()); for (size_t i = 0; i < output_indices_.size(); ++i) { OUTCOME_TRY(ncnn_status(extractor.extract(output_indices_[i], outputs[i]))); auto& tensor = output_tensors_[i]; auto shape = outputs[i].shape(); tensor.Reshape({1, shape.w, shape.h, shape.c}); // ncnn Mat may be padded, flatten to avoid that auto flattened = outputs[i].reshape(shape.w * shape.h * shape.c); OUTCOME_TRY(tensor.CopyFrom(flattened.data, stream_)); } return success(); } class NCNNNetCreator : public Creator { public: const char* GetName() const override { return "ncnn"; } int GetVersion() const override { return 0; } std::unique_ptr Create(const Value& args) override { auto p = std::make_unique(); if (auto r = p->Init(args)) { return p; } else { MMDEPLOY_ERROR("error creating NCNNNet: {}", r.error().message().c_str()); return nullptr; } } }; REGISTER_MODULE(Net, NCNNNetCreator); } // namespace mmdeploy