# Copyright (c) OpenMMLab. All rights reserved. # dataset settings dataset_type = 'CityscapesDataset' data_root = '.' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (128, 128) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(128, 128), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=1, val=dict( type=dataset_type, data_root=data_root, img_dir='', ann_dir='', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='', ann_dir='', pipeline=test_pipeline)) # model settings norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01) model = dict( type='EncoderDecoder', backbone=dict( type='FastSCNN', downsample_dw_channels=(32, 48), global_in_channels=64, global_block_channels=(64, 96, 128), global_block_strides=(2, 2, 1), global_out_channels=128, higher_in_channels=64, lower_in_channels=128, fusion_out_channels=128, out_indices=(0, 1, 2), norm_cfg=norm_cfg, align_corners=False), decode_head=dict( type='DepthwiseSeparableFCNHead', in_channels=128, channels=128, concat_input=False, num_classes=19, in_index=-1, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))