// Copyright (c) OpenMMLab. All rights reserved. #include "pose_detector.h" #include #include "apis/c/common_internal.h" #include "apis/c/handle.h" #include "apis/c/pipeline.h" #include "codebase/mmpose/mmpose.h" #include "core/device.h" #include "core/graph.h" #include "core/mat.h" #include "core/utils/formatter.h" using namespace std; using namespace mmdeploy; namespace { const Value& config_template() { // clang-format off static Value v { { "pipeline", { {"input", {"img_with_boxes"}}, {"output", {"key_points_unflat"}}, { "tasks", { { {"name", "flatten"}, {"type", "Flatten"}, {"input", {"img_with_boxes"}}, {"output", {"patch_flat", "patch_index"}}, }, { {"name", "pose-detector"}, {"type", "Inference"}, {"params", {{"model", "TBD"},{"batch_size", 1}}}, {"input", {"patch_flat"}}, {"output", {"key_points"}} }, { {"name", "unflatten"}, {"type", "Unflatten"}, {"input", {"key_points", "patch_index"}}, {"output", {"key_points_unflat"}}, } } } } } }; // clang-format on return v; } int mmdeploy_pose_detector_create_impl(mm_model_t model, const char* device_name, int device_id, mmdeploy_exec_info_t exec_info, mm_handle_t* handle) { auto config = config_template(); config["pipeline"]["tasks"][1]["params"]["model"] = *static_cast(model); return mmdeploy_pipeline_create(Cast(&config), device_name, device_id, exec_info, handle); } } // namespace int mmdeploy_pose_detector_create(mm_model_t model, const char* device_name, int device_id, mm_handle_t* handle) { return mmdeploy_pose_detector_create_impl(model, device_name, device_id, nullptr, handle); } int mmdeploy_pose_detector_create_by_path(const char* model_path, const char* device_name, int device_id, mm_handle_t* handle) { mm_model_t model{}; if (auto ec = mmdeploy_model_create_by_path(model_path, &model)) { return ec; } auto ec = mmdeploy_pose_detector_create_impl(model, device_name, device_id, nullptr, handle); mmdeploy_model_destroy(model); return ec; } int mmdeploy_pose_detector_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count, mm_pose_detect_t** results) { return mmdeploy_pose_detector_apply_bbox(handle, mats, mat_count, nullptr, nullptr, results); } int mmdeploy_pose_detector_apply_bbox(mm_handle_t handle, const mm_mat_t* mats, int mat_count, const mm_rect_t* bboxes, const int* bbox_count, mm_pose_detect_t** results) { wrapped input; if (auto ec = mmdeploy_pose_detector_create_input(mats, mat_count, bboxes, bbox_count, input.ptr())) { return ec; } wrapped output; if (auto ec = mmdeploy_pose_detector_apply_v2(handle, input, output.ptr())) { return ec; } if (auto ec = mmdeploy_pose_detector_get_result(output, results)) { return ec; } return MM_SUCCESS; } void mmdeploy_pose_detector_release_result(mm_pose_detect_t* results, int count) { if (results == nullptr) { return; } for (int i = 0; i < count; ++i) { delete[] results[i].point; delete[] results[i].score; } delete[] results; } void mmdeploy_pose_detector_destroy(mm_handle_t handle) { delete static_cast(handle); } int mmdeploy_pose_detector_create_v2(mm_model_t model, const char* device_name, int device_id, mmdeploy_exec_info_t exec_info, mm_handle_t* handle) { return mmdeploy_pose_detector_create_impl(model, device_name, device_id, exec_info, handle); } int mmdeploy_pose_detector_create_input(const mm_mat_t* mats, int mat_count, const mm_rect_t* bboxes, const int* bbox_count, mmdeploy_value_t* value) { try { Value input{Value::kArray}; auto result_count = 0; for (int i = 0; i < mat_count; ++i) { mmdeploy::Mat _mat{mats[i].height, mats[i].width, PixelFormat(mats[i].format), DataType(mats[i].type), mats[i].data, Device{"cpu"}}; Value img_with_boxes; if (bboxes && bbox_count) { if (bbox_count[i] == 0) { continue; } for (int j = 0; j < bbox_count[i]; ++j) { Value obj; obj["ori_img"] = _mat; float width = bboxes[j].right - bboxes[j].left + 1; float height = bboxes[j].bottom - bboxes[j].top + 1; obj["bbox"] = {bboxes[j].left, bboxes[j].top, width, height, 1.0}; obj["rotation"] = 0.f; img_with_boxes.push_back(obj); } bboxes += bbox_count[i]; result_count += bbox_count[i]; } else { // inference whole image Value obj; obj["ori_img"] = _mat; obj["bbox"] = {0, 0, _mat.width(), _mat.height(), 1.0}; obj["rotation"] = 0.f; img_with_boxes.push_back(obj); result_count += 1; } input.front().push_back(img_with_boxes); } *value = Take(std::move(input)); return MM_SUCCESS; } catch (const std::exception& e) { MMDEPLOY_ERROR("unhandled exception: {}", e.what()); } catch (...) { MMDEPLOY_ERROR("unknown exception caught"); } return MM_E_FAIL; } int mmdeploy_pose_detector_apply_v2(mm_handle_t handle, mmdeploy_value_t input, mmdeploy_value_t* output) { return mmdeploy_pipeline_apply(handle, input, output); } int mmdeploy_pose_detector_apply_async(mm_handle_t handle, mmdeploy_sender_t input, mmdeploy_sender_t* output) { return mmdeploy_pipeline_apply_async(handle, input, output); } int mmdeploy_pose_detector_get_result(mmdeploy_value_t output, mm_pose_detect_t** results) { if (!output || !results) { return MM_E_INVALID_ARG; } try { Value& value = Cast(output)->front(); auto pose_outputs = from_value>>(value); size_t image_count = pose_outputs.size(); size_t result_count = 0; for (const auto& v : pose_outputs) { result_count += v.size(); } auto deleter = [&](mm_pose_detect_t* p) { mmdeploy_pose_detector_release_result(p, static_cast(result_count)); }; std::unique_ptr _results( new mm_pose_detect_t[result_count]{}, deleter); size_t result_idx = 0; for (const auto& img_result : pose_outputs) { for (const auto& box_result : img_result) { auto& res = _results[result_idx++]; auto size = box_result.key_points.size(); res.point = new mm_pointf_t[size]; res.score = new float[size]; res.length = static_cast(size); for (int k = 0; k < size; k++) { res.point[k].x = box_result.key_points[k].bbox[0]; res.point[k].y = box_result.key_points[k].bbox[1]; res.score[k] = box_result.key_points[k].score; } } } *results = _results.release(); return MM_SUCCESS; } catch (const std::exception& e) { MMDEPLOY_ERROR("unhandled exception: {}", e.what()); } catch (...) { MMDEPLOY_ERROR("unknown exception caught"); } return MM_E_FAIL; }