import argparse import mmcv from mmcv import DictAction from mmcv.parallel import MMDataParallel from mmdeploy.apis import (init_backend_model, post_process_outputs, prepare_data_loader, single_gpu_test) from mmdeploy.apis.utils import assert_cfg_valid, get_classes_from_config def parse_args(): parser = argparse.ArgumentParser( description='MMDeploy test (and eval) a backend.') parser.add_argument('deploy_cfg', help='Deploy config path') parser.add_argument('model_cfg', help='Model config path') parser.add_argument('model', help='Input model file.') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--metrics', type=str, nargs='+', help='evaluation metrics, which depends on the codebase and the ' 'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", ' '"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", ' '"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"' ', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--show-score-thr', type=float, default=0.3, help='score threshold (default: 0.3)') parser.add_argument( '--device', help='device used for conversion', default='cpu') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--metric-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') args = parser.parse_args() return args def main(): args = parse_args() if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') deploy_cfg_path = args.deploy_cfg model_cfg_path = args.model_cfg # load deploy_cfg deploy_cfg = mmcv.Config.fromfile(deploy_cfg_path) model_cfg = mmcv.Config.fromfile(model_cfg_path) assert_cfg_valid(deploy_cfg, model_cfg) # prepare the dataset loader codebase = deploy_cfg['codebase'] dataset, data_loader = prepare_data_loader(codebase, model_cfg) # load the model of the backend device_id = -1 if args.device == 'cpu' else 0 backend = deploy_cfg.get('backend', 'default') model = init_backend_model([args.model], codebase=codebase, backend=backend, class_names=get_classes_from_config( codebase, model_cfg), device_id=device_id) model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(codebase, model, data_loader, args.show, args.show_dir, args.show_score_thr) post_process_outputs(outputs, dataset, model_cfg, codebase, args.metrics, args.out, args.metric_options, args.format_only) if __name__ == '__main__': main()