# 支持 RISC-V MMDeploy 选择 ncnn 作为 RISC-V 平台下的推理后端。完整的部署过程包含两个步骤: 模型转换:在 Host 端将 PyTorch 模型转为 ncnn 模型。并将转换后的模型传到 device。 模型部署:在 Host 端以交叉编译方式编译 ncnn 和 MMDeploy。传到 Device 端进行推理。 ## 1. 模型转换 a) 安装 MMDeploy 可参考 [BUILD 文档](./linux-x86_64.md),安装 ncnn 推理引擎以及 MMDeploy。 b) 模型转换 以 Resnet-18 为例。先参照[文档](https://github.com/open-mmlab/mmclassification)安装 mmcls,然后使用 `tools/deploy.py` 转换模型。 ```bash export MODEL_CONFIG=/path/to/mmclassification/configs/resnet/resnet18_8xb32_in1k.py export MODEL_PATH=https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_8xb32_in1k_20210831-fbbb1da6.pth # 模型转换 cd /path/to/mmdeploy python tools/deploy.py \ configs/mmcls/classification_ncnn_static.py \ $MODEL_CONFIG \ $MODEL_PATH \ tests/data/tiger.jpeg \ --work-dir resnet18 \ --device cpu \ --dump-info ``` ## 2. 模型部署 a) 下载交叉编译工具链,设置环境变量 ```bash # 下载 Xuantie-900-gcc-linux-5.10.4-glibc-x86_64-V2.2.6-20220516.tar.gz # https://occ.t-head.cn/community/download?id=4046947553902661632 tar xf Xuantie-900-gcc-linux-5.10.4-glibc-x86_64-V2.2.6-20220516.tar.gz export RISCV_ROOT_PATH=`realpath Xuantie-900-gcc-linux-5.10.4-glibc-x86_64-V2.2.6` ``` b) 编译 ncnn & opencv ```bash # ncnn # 可参考 https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-allwinner-d1 # opencv git clone https://github.com/opencv/opencv.git mkdir build_riscv && cd build_riscv cmake .. \ -DCMAKE_TOOLCHAIN_FILE=/path/to/mmdeploy/cmake/toolchains/riscv64-unknown-linux-gnu.cmake \ -DCMAKE_INSTALL_PREFIX=install \ -DBUILD_PERF_TESTS=OFF \ -DBUILD_SHARED_LIBS=OFF \ -DBUILD_TESTS=OFF \ -DCMAKE_BUILD_TYPE=Release make -j$(nproc) && make install ``` c) 编译 mmdeploy SDK & demo ```bash cd /path/to/mmdeploy mkdir build_riscv && cd build_riscv cmake .. \ -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/riscv64-unknown-linux-gnu.cmake \ -DMMDEPLOY_BUILD_SDK=ON \ -DMMDEPLOY_SHARED_LIBS=OFF \ -DMMDEPLOY_BUILD_EXAMPLES=ON \ -DMMDEPLOY_TARGET_DEVICES="cpu" \ -DMMDEPLOY_TARGET_BACKENDS="ncnn" \ -Dncnn_DIR=${ncnn_DIR}/build-c906/install/lib/cmake/ncnn/ \ -DMMDEPLOY_CODEBASES=all \ -DOpenCV_DIR=${OpenCV_DIR}/build_riscv/install/lib/cmake/opencv4 make -j$(nproc) && make install ``` 执行 `make install` 之后, examples的可执行文件会保存在 `install/bin` ``` tree -L 1 install/bin/ . ├── image_classification ├── image_restorer ├── image_segmentation ├── object_detection ├── ocr ├── pose_detection └── rotated_object_detection ``` d) 运行 demo 先确认测试模型用了 `--dump-info`,这样 `resnet18` 目录才有 `pipeline.json` 等 SDK 所需文件。 把 dump 好的模型目录(resnet18)、可执行文件(image_classification)、测试图片(tests/data/tiger.jpeg)拷贝到设备中 ```bash ./image_classification cpu ./resnet18 tiger.jpeg ```