# Precompiled package This document is going to describe the way to build MMDeploy package. ## Prerequisites - Download and install Miniconda from the [official website](https://docs.conda.io/en/latest/miniconda.html). - Create conda environments for python 3.6, 3.7, 3.8 and 3.9, respectively. ```shell for PYTHON_VERSION in 3.6 3.7 3.8 3.9 do conda create --name mmdeploy-$PYTHON_VERSION python=$PYTHON_VERSION -y done ``` - Prepare MMDeploy dependencies Please follow the [build-on-Linux guide](../../docs/en/01-how-to-build/linux-x86_64.md) or [build-on-Windows guide](../../docs/en/01-how-to-build/linux-x86_64.md) to install dependencies of MMDeploy, including PyTorch, MMCV, OpenCV, ppl.cv, ONNX Runtime and TensorRT. Make sure the environment variables `pplcv_DIR`, `ONNXRUNTIME_DIR`, `TENSORRT_DIR`, `CUDNN_DIR` and `CUDA_TOOLKIT_ROOT_DIR` are exported. ## Run precompiled command - On Linux platform, ```shell conda activate mmdeploy-3.6 pip install pyyaml cd the/root/path/of/mmdeploy python tools/package_tools/mmdeploy_builder.py tools/package_tools/configs/linux_x64.yaml . ``` You will get the precompiled packages `mmdeploy-{version}-linux-x86_64-cuda11.1-tensorrt8.2.3.0` and `mmdeploy-{version}-linux-x86_64-onnxruntime1.8.1` in the current directory if everything's going well. - On Windows platform, open `Anaconda Powershell Prompt` from the start menu and execute: ```shell conda activate mmdeploy-3.6 pip install pyyaml cd the/root/path/of/MMDeploy python tools/package_tools/mmdeploy_builder.py tools/package_tools/configs/windows_x64.yaml . ``` When the build procedure finishes successfully, you will find `mmdeploy-{version}-windows-amd64-cuda11.1-tensorrt8.2.3.0` and `mmdeploy-{version}-windows-amd64-onnxruntime1.8.1` precompiled packages in the current directory.