# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from mmcv import DictAction from mmcv.parallel import MMDataParallel from mmdeploy.apis import build_task_processor from mmdeploy.utils.config_utils import load_config from mmdeploy.utils.device import parse_device_id from mmdeploy.utils.timer import TimeCounter def parse_args(): parser = argparse.ArgumentParser( description='MMDeploy test (and eval) a backend.') parser.add_argument('deploy_cfg', help='Deploy config path') parser.add_argument('model_cfg', help='Model config path') parser.add_argument( '--model', type=str, nargs='+', help='Input model files.') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--metrics', type=str, nargs='+', help='evaluation metrics, which depends on the codebase and the ' 'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", ' '"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", ' '"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"' ', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--device', help='device used for conversion', default='cpu') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--metric-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') parser.add_argument( '--log2file', type=str, help='log evaluation results and speed to file', default=None) parser.add_argument( '--json-file', type=str, help='log evaluation results to json file', default='./results.json') parser.add_argument( '--speed-test', action='store_true', help='activate speed test') parser.add_argument( '--warmup', type=int, help='warmup before counting inference elapse, require setting ' 'speed-test first', default=10) parser.add_argument( '--log-interval', type=int, help='the interval between each log, require setting ' 'speed-test first', default=100) parser.add_argument( '--batch-size', type=int, default=1, help='the batch size for test, would override `samples_per_gpu`' 'in data config.') parser.add_argument( '--uri', help='Remote ipv4:port or ipv6:port for inference on edge device.') args = parser.parse_args() return args def main(): args = parse_args() if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') deploy_cfg_path = args.deploy_cfg model_cfg_path = args.model_cfg # load deploy_cfg deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path) # merge options for model cfg if args.cfg_options is not None: model_cfg.merge_from_dict(args.cfg_options) task_processor = build_task_processor(model_cfg, deploy_cfg, args.device) # prepare the dataset loader dataset_type = 'test' dataset = task_processor.build_dataset(model_cfg, dataset_type) # override samples_per_gpu that used for training model_cfg.data['samples_per_gpu'] = args.batch_size data_loader = task_processor.build_dataloader( dataset, samples_per_gpu=model_cfg.data.samples_per_gpu, workers_per_gpu=model_cfg.data.workers_per_gpu) # load the model of the backend model = task_processor.init_backend_model(args.model, uri=args.uri) is_device_cpu = (args.device == 'cpu') device_id = None if is_device_cpu else parse_device_id(args.device) destroy_model = model.destroy model = MMDataParallel(model, device_ids=[device_id]) # The whole dataset test wrapped a MMDataParallel class outside the module. # As mmcls.apis.test.py single_gpu_test defined, the MMDataParallel needs # a 'CLASSES' attribute. So we ensure the MMDataParallel class has the same # CLASSES attribute as the inside module. if hasattr(model.module, 'CLASSES'): model.CLASSES = model.module.CLASSES if args.speed_test: with_sync = not is_device_cpu with TimeCounter.activate( warmup=args.warmup, log_interval=args.log_interval, with_sync=with_sync, file=args.log2file, batch_size=model_cfg.data.samples_per_gpu): outputs = task_processor.single_gpu_test(model, data_loader, args.show, args.show_dir) else: outputs = task_processor.single_gpu_test(model, data_loader, args.show, args.show_dir) json_dir, _ = os.path.split(args.json_file) if json_dir: os.makedirs(json_dir, exist_ok=True) task_processor.evaluate_outputs( model_cfg, outputs, dataset, args.metrics, args.out, args.metric_options, args.format_only, args.log2file, json_file=args.json_file) # only effective when the backend requires explicit clean-up (e.g. Ascend) destroy_model() if __name__ == '__main__': main()