OpenMMLab 官网 HOT      OpenMMLab 开放平台 TRY IT OUT
 
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdeploy.readthedocs.io/zh_CN/latest/) [![badge](https://github.com/open-mmlab/mmdeploy/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdeploy/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmdeploy/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdeploy) [![license](https://img.shields.io/github/license/open-mmlab/mmdeploy.svg)](https://github.com/open-mmlab/mmdeploy/blob/master/LICENSE) [![issue resolution](https://img.shields.io/github/issues-closed-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues) [![open issues](https://img.shields.io/github/issues-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues) [English](README.md) | 简体中文 ## 介绍 MMDeploy 是 [OpenMMLab](https://openmmlab.com/) 模型部署工具箱,**为各算法库提供统一的部署体验**。基于 MMDeploy,开发者可以轻松从训练 repo 生成指定硬件所需 SDK,省去大量适配时间。 ## 架构简析
## 特性简介 ### 支持超多 OpenMMLab 算法库 - [mmcls](docs/zh_cn/04-supported-codebases/mmcls.md) - [mmdet](docs/zh_cn/04-supported-codebases/mmdet.md) - [mmseg](docs/zh_cn/04-supported-codebases/mmseg.md) - [mmedit](docs/zh_cn/04-supported-codebases/mmedit.md) - [mmocr](docs/zh_cn/04-supported-codebases/mmocr.md) - [mmpose](docs/zh_cn/04-supported-codebases/mmpose.md) - [mmdet3d](docs/zh_cn/04-supported-codebases/mmdet3d.md) - [mmrotate](docs/zh_cn/04-supported-codebases/mmrotate.md) - [mmaction2](docs/zh_cn/04-supported-codebases/mmaction2.md) ### 支持多种推理后端 支持的设备平台和推理引擎如下表所示。benchmark请参考[这里](docs/zh_cn/03-benchmark/benchmark.md) | Device / Platform | Linux | Windows | macOS | Android | | ----------------- | --------------------------------------------------------------- | --------------------------------------- | -------- | ---------------- | | x86_64 CPU | ✔️ONNX Runtime
✔️pplnn
✔️ncnn
✔️OpenVINO
✔️LibTorch | ✔️ONNX Runtime
✔️OpenVINO | - | - | | ARM CPU | ✔️ncnn | - | - | ✔️ncnn | | RISC-V | ✔️ncnn | - | - | - | | NVIDIA GPU | ✔️ONNX Runtime
✔️TensorRT
✔️pplnn
✔️LibTorch | ✔️ONNX Runtime
✔️TensorRT
✔️pplnn | - | - | | NVIDIA Jetson | ✔️TensorRT | ✔️TensorRT | - | - | | Huawei ascend310 | ✔️CANN | - | - | - | | Rockchip | ✔️RKNN | - | - | - | | Apple M1 | - | - | ✔️CoreML | - | | Adreno GPU | - | - | - | ✔️ncnn
✔️SNPE | | Hexagon DSP | - | - | - | ✔️SNPE | ### SDK 可高度定制化 - Transform 数据预处理 - Net 推理 - Module 后处理 ## [中文文档](https://mmdeploy.readthedocs.io/zh_CN/latest/) - [快速上手](docs/zh_cn/get_started.md) - [编译](docs/zh_cn/01-how-to-build/build_from_source.md) - [一键式脚本安装](docs/zh_cn/01-how-to-build/build_from_script.md) - [Build from Docker](docs/zh_cn/01-how-to-build/build_from_docker.md) - [Build for Linux](docs/zh_cn/01-how-to-build/linux-x86_64.md) - [Build for macOS](docs/zh_cn/01-how-to-build/macos-arm64.md) - [Build for Win10](docs/zh_cn/01-how-to-build/windows.md) - [Build for Android](docs/zh_cn/01-how-to-build/android.md) - [Build for Jetson](docs/zh_cn/01-how-to-build/jetsons.md) - [Build for SNPE](docs/zh_cn/01-how-to-build/snpe.md) - [Cross Build for aarch64](docs/zh_cn/01-how-to-build/cross_build_ncnn_aarch64.md) - 使用 - [把模型转换到推理 Backend](docs/zh_cn/02-how-to-run/convert_model.md) - [配置转换参数](docs/zh_cn/02-how-to-run/write_config.md) - [量化](docs/zh_cn/02-how-to-run/quantize_model.md) - [测试转换完成的模型](docs/zh_cn/02-how-to-run/profile_model.md) - [工具集介绍](docs/zh_cn/02-how-to-run/useful_tools.md) - 开发指南 - [软件架构](docs/zh_cn/07-developer-guide/architecture.md) - [支持新模型](docs/zh_cn/07-developer-guide/support_new_model.md) - [增加推理 backend](docs/zh_cn/07-developer-guide/support_new_backend.md) - [模型分块](docs/zh_cn/07-developer-guide/partition_model.md) - [测试重写模型](docs/zh_cn/07-developer-guide/test_rewritten_models.md) - [backend 算子测试](docs/zh_cn/07-developer-guide/add_backend_ops_unittest.md) - [回归测试](docs/zh_cn/07-developer-guide/regression_test.md) - 各 backend 自定义算子列表 - [ncnn](docs/zh_cn/06-custom-ops/ncnn.md) - [onnxruntime](docs/zh_cn/06-custom-ops/onnxruntime.md) - [tensorrt](docs/zh_cn/06-custom-ops/tensorrt.md) - [FAQ](docs/zh_cn/faq.md) - [贡献者手册](.github/CONTRIBUTING.md) ## 新人解说 - [01 术语解释、加载第一个模型](docs/zh_cn/tutorial/01_introduction_to_model_deployment.md) - [02 部署常见问题](docs/zh_cn/tutorial/02_challenges.md) - [03 torch转onnx](docs/zh_cn/tutorial/03_pytorch2onnx.md) - [04 让torch支持更多onnx算子](docs/zh_cn/tutorial/04_onnx_custom_op.md) - [05 调试onnx模型](docs/zh_cn/tutorial/05_onnx_model_editing.md) ## 基准与模型库 基准和支持的模型列表可以在[基准](https://mmdeploy.readthedocs.io/zh_CN/latest/benchmark.html)和[模型列表](https://mmdeploy.readthedocs.io/en/latest/supported_models.html)中获得。 ## 贡献指南 我们感谢所有的贡献者为改进和提升 MMDeploy 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。 ## 致谢 - [OpenPPL](https://github.com/openppl-public/ppl.nn): 高性能推理框架底层库 - [OpenVINO](https://github.com/openvinotoolkit/openvino): AI 推理优化和部署框架 - [ncnn](https://github.com/tencent/ncnn): 为手机端极致优化的高性能神经网络前向计算框架 ## 引用 如果您在研究中使用了本项目的代码或者性能基准,请参考如下 bibtex 引用 MMDeploy: ```BibTeX @misc{=mmdeploy, title={OpenMMLab's Model Deployment Toolbox.}, author={MMDeploy Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmdeploy}}, year={2021} } ``` ## 开源许可证 该项目采用 [Apache 2.0 开源许可证](LICENSE)。 ## OpenMMLab 的其他项目 - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库 - [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口 - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱 - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 - [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱和基准测试 - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱 - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包 - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱 - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准 - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准 - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准 - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准 - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱 - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台 - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准 - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱 - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱 - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架 ## 欢迎加入 OpenMMLab 社区 扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=MSMAfWOe),或添加微信小助手”OpenMMLabwx“加入官方交流微信群。
我们会在 OpenMMLab 社区为大家 - 📢 分享 AI 框架的前沿核心技术 - 💻 解读 PyTorch 常用模块源码 - 📰 发布 OpenMMLab 的相关新闻 - 🚀 介绍 OpenMMLab 开发的前沿算法 - 🏃 获取更高效的问题答疑和意见反馈 - 🔥 提供与各行各业开发者充分交流的平台 干货满满 📘,等您来撩 💗,OpenMMLab 社区期待您的加入 👬