Junhwa Song f7c484a046
Add support for converting a inpainting model to ONNX and TensorRT (#1831)
* Add support for inpainting models

* Add configs

* Add comment

* Refactor

* Add test code for inpainting task

* Fix

* Fix

* Update

* Fix

* Fix

* Update docs

* Update

* Fix visualization

* Handle case without Resize
2023-03-29 19:17:24 +08:00

129 lines
4.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.apis import build_task_processor
from mmdeploy.utils import load_config
from mmdeploy.utils.test import SwitchBackendWrapper
@pytest.fixture(scope='module')
def model_cfg():
cfg = 'tests/test_codebase/test_mmedit/data/inpainting_model.py'
return load_config(cfg)[0]
@pytest.fixture(scope='module')
def deploy_cfg():
return mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmedit', task='Inpainting'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['masked_img', 'mask'],
output_names=['fake_img'])))
@pytest.fixture(scope='module')
def input_img():
return np.random.rand(32, 32, 3)
@pytest.fixture(scope='module')
def model_input():
return dict(
masked_img=np.random.rand(32, 32, 3),
mask=np.random.randint(0, 2, (32, 32)))
@pytest.fixture(scope='module')
def task_processor(model_cfg, deploy_cfg):
return build_task_processor(model_cfg, deploy_cfg, device='cpu')
def test_init_pytorch_model(task_processor):
torch_model = task_processor.init_pytorch_model(model_checkpoint=None)
assert torch_model is not None
@pytest.fixture(scope='module')
def backend_model(task_processor):
from mmdeploy.backend.onnxruntime import ORTWrapper
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(outputs=dict(fake_img=torch.rand(3, 32, 32)))
yield task_processor.init_backend_model([''])
def test_init_backend_model(backend_model):
assert backend_model is not None
def test_create_input(task_processor, input_img):
inputs, _ = task_processor.create_input(
input_img, img_shape=input_img.shape[:2])
assert 'masked_img' in inputs
assert 'mask' in inputs
def test_visualize(backend_model, task_processor, model_input, input_img):
result = task_processor.run_inference(backend_model, model_input)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
task_processor.visualize(backend_model, input_img, result[0], filename,
'onnxruntime')
assert os.path.exists(filename)
def test_run_inference(backend_model, task_processor, model_input):
results = task_processor.run_inference(backend_model, model_input)
assert results is not None
def test_get_tensor_from_input(task_processor, model_input):
with pytest.raises(NotImplementedError):
task_processor.get_tensor_from_input(model_input)
def test_get_partition_cfg(task_processor):
with pytest.raises(NotImplementedError):
task_processor.get_partition_cfg(None)
def test_build_dataset(task_processor):
data = dict(
test=dict(
type='ImgInpaintingDataset',
ann_file='tests/test_codebase/test_mmedit/data/ann_file.txt',
data_prefix='tests/test_codebase/test_mmedit/data',
pipeline=[
dict(type='LoadImageFromFile', key='gt_img'),
dict(type='LoadMask')
]))
dataset_cfg = mmcv.Config(dict(data=data))
dataset = task_processor.build_dataset(
dataset_cfg=dataset_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
def test_single_gpu_test(backend_model, model_cfg, task_processor):
from mmcv.parallel import MMDataParallel
dataset = task_processor.build_dataset(model_cfg, dataset_type='test')
assert dataset is not None, 'Failed to build dataset'
dataloader = task_processor.build_dataloader(dataset, 1, 1)
assert dataloader is not None, 'Failed to build dataloader'
backend_model = MMDataParallel(backend_model, device_ids=[0])
outputs = task_processor.single_gpu_test(backend_model, dataloader)
assert outputs is not None, 'Failed to test model'