mmdeploy/demo/python/rotated_object_detection.py
lvhan028 2c18fbd2c8
[Enhancement] support kwargs in SDK python bindings (#794)
* support-kwargs

* make '__call__' as single image inference and add 'batch' API to deal with batch images inference

* fix linting error and typo

* fix lint
2022-07-29 12:32:42 +08:00

52 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from math import cos, sin
import cv2
import numpy as np
from mmdeploy_python import RotatedDetector
def parse_args():
parser = argparse.ArgumentParser(
description='show how to use sdk python api')
parser.add_argument('device_name', help='name of device, cuda or cpu')
parser.add_argument(
'model_path', help='path of SDK model dumped by model converter')
parser.add_argument('image_path', help='path of an image')
args = parser.parse_args()
return args
def main():
args = parse_args()
img = cv2.imread(args.image_path)
detector = RotatedDetector(
model_path=args.model_path, device_name=args.device_name, device_id=0)
rbboxes, labels = detector(img)
indices = [i for i in range(len(rbboxes))]
for index, rbbox, label_id in zip(indices, rbboxes, labels):
[cx, cy, w, h, angle], score = rbbox[0:5], rbbox[-1]
if score < 0.1:
continue
[wx, wy, hx, hy] = \
0.5 * np.array([w, w, -h, h]) * \
np.array([cos(angle), sin(angle), sin(angle), cos(angle)])
points = np.array([[[int(cx - wx - hx),
int(cy - wy - hy)],
[int(cx + wx - hx),
int(cy + wy - hy)],
[int(cx + wx + hx),
int(cy + wy + hy)],
[int(cx - wx + hx),
int(cy - wy + hy)]]])
cv2.drawContours(img, points, -1, (0, 255, 0), 2)
cv2.imwrite('output_detection.png', img)
if __name__ == '__main__':
main()