mmdeploy/tests/test_codebase/test_mmaction/test_video_recognition.py

107 lines
3.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from tempfile import NamedTemporaryFile, TemporaryDirectory
import pytest
import torch
from mmengine import Config
import mmdeploy.backend.onnxruntime as ort_apis
from mmdeploy.apis import build_task_processor
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Codebase, load_config
from mmdeploy.utils.test import SwitchBackendWrapper
try:
import_codebase(Codebase.MMACTION)
except ImportError:
pytest.skip(
f'{Codebase.MMACTION} is not installed.', allow_module_level=True)
model_cfg_path = 'tests/test_codebase/test_mmaction/data/model.py'
model_cfg = load_config(model_cfg_path)[0]
deploy_cfg = Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmaction', task='VideoRecognition'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
onnx_file = NamedTemporaryFile(suffix='.onnx').name
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu')
img_shape = (224, 224)
num_classes = 400
video = 'tests/test_codebase/test_mmaction/data/video/demo.mp4'
@pytest.fixture
def backend_model():
from mmdeploy.backend.onnxruntime import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(outputs={
'output': torch.rand(1, num_classes),
})
yield task_processor.build_backend_model([''])
wrapper.recover()
def test_build_backend_model(backend_model):
assert isinstance(backend_model, torch.nn.Module)
def test_create_input():
inputs = task_processor.create_input(video, input_shape=img_shape)
assert isinstance(inputs, tuple) and len(inputs) == 2
def test_build_pytorch_model():
from mmaction.models.recognizers.base import BaseRecognizer
model = task_processor.build_pytorch_model(None)
assert isinstance(model, BaseRecognizer)
def test_get_tensor_from_input():
input_data = {'inputs': torch.ones(3, 4, 5)}
inputs = task_processor.get_tensor_from_input(input_data)
assert torch.equal(inputs, torch.ones(3, 4, 5))
def test_get_model_name():
model_name = task_processor.get_model_name()
assert isinstance(model_name, str) and model_name is not None
def test_build_dataset_and_dataloader():
from torch.utils.data import DataLoader, Dataset
dataset = task_processor.build_dataset(
dataset_cfg=model_cfg.test_dataloader.dataset)
assert isinstance(dataset, Dataset), 'Failed to build dataset'
dataloader_cfg = task_processor.model_cfg.test_dataloader
dataloader = task_processor.build_dataloader(dataloader_cfg)
assert isinstance(dataloader, DataLoader), 'Failed to build dataloader'
def test_build_test_runner(backend_model):
from mmdeploy.codebase.base.runner import DeployTestRunner
temp_dir = TemporaryDirectory().name
runner = task_processor.build_test_runner(backend_model, temp_dir)
assert isinstance(runner, DeployTestRunner)
def test_get_preprocess():
process = task_processor.get_preprocess()
assert process is not None
def test_get_postprocess():
process = task_processor.get_postprocess()
assert isinstance(process, dict)