mmdeploy/tests/test_codebase/test_mmocr/test_mmocr_models.py

464 lines
15 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
import mmengine
import numpy as np
import pytest
import torch
from mmdeploy.codebase import import_codebase
from mmdeploy.core import RewriterContext, patch_model
from mmdeploy.utils import Backend, Codebase
from mmdeploy.utils.test import (WrapModel, check_backend, get_model_outputs,
get_rewrite_outputs)
try:
import_codebase(Codebase.MMOCR)
except ImportError:
pytest.skip(f'{Codebase.MMOCR} is not installed.', allow_module_level=True)
from mmocr.models.textdet.necks import FPNC
dictionary = dict(
type='Dictionary',
dict_file='tests/test_codebase/test_mmocr/data/lower_english_digits.txt',
with_padding=True)
class FPNCNeckModel(FPNC):
def __init__(self, in_channels, init_cfg=None):
super().__init__(in_channels, init_cfg=init_cfg)
self.in_channels = in_channels
self.neck = FPNC(in_channels, init_cfg=init_cfg)
def forward(self, inputs):
neck_inputs = [
inputs.repeat([1, channel, 1, 1]) for channel in self.in_channels
]
output = self.neck.forward(neck_inputs)
return output
def get_bidirectionallstm_model():
from mmocr.models.textrecog.layers.lstm_layer import BidirectionalLSTM
model = BidirectionalLSTM(32, 16, 16)
model.requires_grad_(False)
return model
def get_single_stage_text_detector_model():
from mmocr.models.textdet import SingleStageTextDetector
backbone = dict(
type='mmdet.ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe')
neck = dict(
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256)
det_head = dict(
type='DBHead',
in_channels=256,
module_loss=dict(type='DBModuleLoss'),
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad'))
model = SingleStageTextDetector(backbone, det_head, neck)
model.requires_grad_(False)
return model
def get_crnn_decoder_model(rnn_flag):
from mmocr.models.textrecog.decoders import CRNNDecoder
model = CRNNDecoder(32, dictionary, rnn_flag=rnn_flag)
model.requires_grad_(False)
return model
def get_fpnc_neck_model():
model = FPNCNeckModel([2, 4, 8, 16])
model.requires_grad_(False)
return model
def get_base_recognizer_model():
from mmocr.models.textrecog.recognizers import CRNN
cfg = dict(
preprocessor=None,
backbone=dict(type='MiniVGG', leaky_relu=False, input_channels=1),
encoder=None,
decoder=dict(
type='CRNNDecoder',
in_channels=512,
rnn_flag=True,
module_loss=dict(type='CTCModuleLoss', letter_case='lower'),
postprocessor=dict(type='CTCPostProcessor'),
dictionary=dictionary),
data_preprocessor=dict(
type='mmocr.TextRecogDataPreprocessor', mean=[127], std=[127]))
model = CRNN(
backbone=cfg['backbone'],
encoder=None,
decoder=cfg['decoder'],
data_preprocessor=cfg['data_preprocessor'])
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend', [Backend.NCNN])
def test_bidirectionallstm(backend: Backend):
"""Test forward rewrite of bidirectionallstm."""
check_backend(backend)
bilstm = get_bidirectionallstm_model()
bilstm.cpu().eval()
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(output_names=['output'], input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 1, 32)
# to get outputs of pytorch model
model_inputs = {
'input': input,
}
model_outputs = get_model_outputs(bilstm, 'forward', model_inputs)
# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(bilstm, 'forward')
rewrite_inputs = {'input': input}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=True)
if is_backend_output:
model_output = model_outputs.cpu().numpy()
rewrite_output = rewrite_outputs[0].cpu().numpy()
assert np.allclose(model_output, rewrite_output, rtol=1e-3, atol=1e-4)
else:
assert rewrite_outputs is not None
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
def test_simple_test_of_single_stage_text_detector(backend: Backend):
"""Test simple_test single_stage_text_detector."""
check_backend(backend)
single_stage_text_detector = get_single_stage_text_detector_model()
single_stage_text_detector.eval()
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextDetection',
)))
input = torch.rand(1, 3, 64, 64)
model_outputs = single_stage_text_detector._forward(input)
wrapped_model = WrapModel(single_stage_text_detector, '_forward')
rewrite_inputs = {'inputs': input}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=True)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
model_outputs = model_outputs.cpu().numpy()
rewrite_outputs = rewrite_outputs.cpu().numpy()
assert np.allclose(model_outputs, rewrite_outputs, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize('backend', [Backend.NCNN])
@pytest.mark.parametrize('rnn_flag', [True, False])
def test_crnndecoder(backend: Backend, rnn_flag: bool):
"""Test forward rewrite of crnndecoder."""
check_backend(backend)
crnn_decoder = get_crnn_decoder_model(rnn_flag)
crnn_decoder.cpu().eval()
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 32, 1, 64)
out_enc = None
data_samples = None
# to get outputs of pytorch model
model_inputs = {
'feat': input,
'out_enc': out_enc,
'data_samples': data_samples
}
model_outputs = get_model_outputs(crnn_decoder, 'forward_train',
model_inputs)
# to get outputs of onnx model after rewrite
wrapped_model = WrapModel(
crnn_decoder,
'forward_train',
out_enc=out_enc,
data_samples=data_samples)
rewrite_inputs = {'feat': input}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg,
run_with_backend=True)
rewrite_outputs = [rewrite_outputs[-1]]
if is_backend_output:
for model_output, rewrite_output in zip(model_outputs,
rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
print(model_outputs, rewrite_output)
assert np.allclose(
model_output, rewrite_output, rtol=1e-03, atol=1e-04)
else:
assert rewrite_outputs is not None
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
@pytest.mark.parametrize(
'data_samples', [[[{}]], [[{
'resize_shape': [32, 32],
'valid_ratio': 1.0
}]]])
@pytest.mark.parametrize('is_dynamic', [True, False])
def test_forward_of_encoder_decoder_recognizer(data_samples, is_dynamic,
backend):
"""Test forward base_recognizer."""
check_backend(backend)
base_recognizer = get_base_recognizer_model()
base_recognizer.eval()
if not is_dynamic:
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
else:
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(
input_shape=None,
dynamic_axes={
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'output': {
0: 'batch',
2: 'height',
3: 'width'
}
}),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
input = torch.rand(1, 1, 32, 32)
model_outputs = base_recognizer.forward(input)
wrapped_model = WrapModel(
base_recognizer, 'forward', data_samples=data_samples[0])
rewrite_inputs = {
'batch_inputs': input,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
model_outputs = model_outputs.cpu().numpy()
rewrite_outputs = rewrite_outputs.cpu().numpy()
assert np.allclose(model_outputs, rewrite_outputs, rtol=1e-03, atol=1e-05)
@pytest.mark.parametrize('backend', [Backend.TENSORRT])
def test_forward_of_fpnc(backend: Backend):
"""Test forward rewrite of fpnc."""
check_backend(backend)
fpnc = get_fpnc_neck_model().cuda()
fpnc.eval()
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(
type=backend.value,
common_config=dict(max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
inputs=dict(
min_shape=[1, 1, 64, 64],
opt_shape=[1, 1, 64, 64],
max_shape=[1, 1, 64, 64])))
]),
onnx_config=dict(
input_shape=None,
input_names=['inputs'],
output_names=['output']),
codebase_config=dict(type='mmocr', task='TextDetection')))
input = torch.rand(1, 1, 64, 64).cuda()
model_inputs = {
'inputs': input,
}
model_outputs = get_model_outputs(fpnc, 'forward', model_inputs)
wrapped_model = WrapModel(fpnc, 'forward')
rewrite_inputs = {
'inputs': input,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if is_backend_output:
rewrite_outputs = rewrite_outputs[0]
model_outputs = model_outputs.cpu().numpy()
rewrite_outputs = rewrite_outputs.cpu().numpy()
assert np.allclose(model_outputs, rewrite_outputs, rtol=1e-03, atol=1e-05)
def get_sar_model_cfg(decoder_type: str):
model = dict(
type='SARNet',
data_preprocessor=dict(
type='mmocr.TextRecogDataPreprocessor',
mean=[127, 127, 127],
std=[127, 127, 127]),
backbone=dict(type='ResNet31OCR'),
encoder=dict(
type='mmocr.SAREncoder',
enc_bi_rnn=False,
enc_do_rnn=0.1,
enc_gru=False),
decoder=dict(
type=f'mmocr.{decoder_type}',
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_do_rnn=0,
dec_gru=False,
pred_dropout=0.1,
d_k=512,
pred_concat=True,
postprocessor=dict(type='AttentionPostprocessor'),
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, reduction='mean'),
dictionary=dict(
type='Dictionary',
dict_file='tests/test_codebase/test_mmocr/'
'data/lower_english_digits.txt',
with_start=True,
with_end=True,
same_start_end=True,
with_padding=True,
with_unknown=True),
max_seq_len=30))
return mmengine.Config(dict(model=model))
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
@pytest.mark.parametrize('decoder_type',
['SequentialSARDecoder', 'ParallelSARDecoder'])
def test_sar_model(backend: Backend, decoder_type):
check_backend(backend)
import os.path as osp
import onnx
from mmocr.models.textrecog import SARNet
sar_cfg = get_sar_model_cfg(decoder_type)
sar_cfg.model.pop('type')
pytorch_model = SARNet(**(sar_cfg.model))
# img_meta = {
# 'ori_shape': [48, 160],
# 'img_shape': [48, 160, 3],
# 'scale_factor': [1., 1.]
# }
# from mmengine.structures import InstanceData
# from mmocr.structures import TextRecogDataSample
# pred_instances = InstanceData(metainfo=img_meta)
# data_sample = TextRecogDataSample(pred_instances=pred_instances)
# data_sample.set_metainfo(img_meta)
model_inputs = {'inputs': torch.rand(1, 3, 48, 160), 'data_samples': None}
deploy_cfg = mmengine.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(input_shape=None),
codebase_config=dict(
type='mmocr',
task='TextRecognition',
)))
# patch model
pytorch_model.cfg = sar_cfg
patched_model = patch_model(
pytorch_model, cfg=deploy_cfg, backend=backend.value)
onnx_file_path = tempfile.NamedTemporaryFile(suffix='.onnx').name
input_names = [k for k, v in model_inputs.items() if k != 'ctx']
# model_forward = patched_model.forward
# from functools import partial
# patched_model.forward = partial(patched_model.forward,
# **{'data_samples': [data_sample]})
with RewriterContext(
cfg=deploy_cfg, backend=backend.value), torch.no_grad():
torch.onnx.export(
patched_model,
tuple([v for k, v in model_inputs.items()]),
onnx_file_path,
export_params=True,
input_names=input_names,
output_names=None,
opset_version=11,
dynamic_axes=None,
keep_initializers_as_inputs=False)
# The result should be different due to the rewrite.
# So we only check if the file exists
assert osp.exists(onnx_file_path)
model = onnx.load(onnx_file_path)
assert model is not None
try:
onnx.checker.check_model(model)
except onnx.checker.ValidationError:
assert False