mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* fix numba numpy version not compatibale * fix mmcls ut * update * update * only do lint when deploy configs changed
109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
num_stages=4,
|
|
out_indices=(3, ),
|
|
style='pytorch'),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1000,
|
|
in_channels=512,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
topk=(1, 5)))
|
|
dataset_type = 'ImageNet'
|
|
data_preprocessor = dict(
|
|
num_classes=1000,
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='RandomResizedCrop', scale=224),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='PackClsInputs')
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='ResizeEdge', scale=256, edge='short'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='PackClsInputs')
|
|
]
|
|
train_dataloader = dict(
|
|
batch_size=2,
|
|
num_workers=1,
|
|
dataset=dict(
|
|
type='ImageNet',
|
|
data_root='tests/test_codebase/test_mmcls/data/imgs',
|
|
ann_file='ann.txt',
|
|
data_prefix='train',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='RandomResizedCrop', scale=224),
|
|
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
|
dict(type='PackClsInputs')
|
|
]),
|
|
sampler=dict(type='DefaultSampler', shuffle=True))
|
|
val_dataloader = dict(
|
|
batch_size=2,
|
|
num_workers=1,
|
|
dataset=dict(
|
|
type='ImageNet',
|
|
data_root='tests/test_codebase/test_mmcls/data/imgs',
|
|
ann_file='ann.txt',
|
|
data_prefix='val',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='ResizeEdge', scale=256, edge='short'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='PackClsInputs')
|
|
]),
|
|
sampler=dict(type='DefaultSampler', shuffle=False))
|
|
val_evaluator = dict(type='Accuracy', topk=(1, 5))
|
|
test_dataloader = dict(
|
|
batch_size=2,
|
|
num_workers=1,
|
|
dataset=dict(
|
|
type='ImageNet',
|
|
data_root='tests/test_codebase/test_mmcls/data/imgs',
|
|
ann_file='ann.txt',
|
|
data_prefix='val',
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='ResizeEdge', scale=256, edge='short'),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='PackClsInputs')
|
|
]),
|
|
sampler=dict(type='DefaultSampler', shuffle=False))
|
|
test_evaluator = dict(type='Accuracy', topk=(1, 5))
|
|
optim_wrapper = dict(
|
|
optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
|
|
param_scheduler = dict(
|
|
type='MultiStepLR', by_epoch=True, milestones=[30, 60, 90], gamma=0.1)
|
|
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
|
|
val_cfg = dict()
|
|
test_cfg = dict()
|
|
auto_scale_lr = dict(base_batch_size=256)
|
|
default_scope = 'mmcls'
|
|
default_hooks = dict(
|
|
timer=dict(type='IterTimerHook'),
|
|
logger=dict(type='LoggerHook', interval=100),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
checkpoint=dict(type='CheckpointHook', interval=1),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
visualization=dict(type='VisualizationHook', enable=False))
|
|
env_cfg = dict(
|
|
cudnn_benchmark=False,
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
|
dist_cfg=dict(backend='nccl'))
|
|
vis_backends = [dict(type='LocalVisBackend')]
|
|
visualizer = dict(
|
|
type='ClsVisualizer', vis_backends=[dict(type='LocalVisBackend')])
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume = False
|
|
randomness = dict(seed=None, deterministic=False)
|