mmdeploy/tests/test_codebase/test_mmseg/data/model.py

97 lines
2.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# dataset settings
dataset_type = 'CityscapesDataset'
data_root = '.'
crop_size = (128, 128)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=crop_size, keep_ratio=False),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='PackSegInputs')
]
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path='', seg_map_path=''),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
backbone=dict(
type='FastSCNN',
downsample_dw_channels=(32, 48),
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_block_strides=(2, 2, 1),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
out_indices=(0, 1, 2),
norm_cfg=norm_cfg,
align_corners=False),
decode_head=dict(
type='DepthwiseSeparableFCNHead',
in_channels=128,
channels=128,
concat_input=False,
num_classes=19,
in_index=-1,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
# from default_runtime
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
log_level = 'INFO'
load_from = None
resume = False
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer')
# from schedules
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
sampler_seed=dict(type='DistSamplerSeedHook'),
)