130 lines
5.0 KiB
C++
130 lines
5.0 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
// clang-format off
|
|
#include "catch.hpp"
|
|
// clang-format on
|
|
|
|
#include "mmdeploy/apis/c/mmdeploy/text_recognizer.h"
|
|
#include "mmdeploy/core/logger.h"
|
|
#include "mmdeploy/core/utils/formatter.h"
|
|
#include "opencv2/opencv.hpp"
|
|
#include "test_resource.h"
|
|
|
|
using namespace std;
|
|
|
|
TEST_CASE("test text recognizer's c api", "[.text-recognizer][resource]") {
|
|
auto test = [](const string& device, const string& model_path, const vector<string>& img_list) {
|
|
mmdeploy_text_recognizer_t recognizer{nullptr};
|
|
auto ret =
|
|
mmdeploy_text_recognizer_create_by_path(model_path.c_str(), device.c_str(), 0, &recognizer);
|
|
REQUIRE(ret == MMDEPLOY_SUCCESS);
|
|
|
|
vector<cv::Mat> cv_mats;
|
|
vector<mmdeploy_mat_t> mats;
|
|
for (auto& img_path : img_list) {
|
|
cv::Mat mat = cv::imread(img_path);
|
|
REQUIRE(!mat.empty());
|
|
cv_mats.push_back(mat);
|
|
mats.push_back({mat.data, mat.rows, mat.cols, mat.channels(), MMDEPLOY_PIXEL_FORMAT_BGR,
|
|
MMDEPLOY_DATA_TYPE_UINT8});
|
|
}
|
|
|
|
mmdeploy_text_recognition_t* results{};
|
|
ret = mmdeploy_text_recognizer_apply_bbox(recognizer, mats.data(), (int)mats.size(), nullptr,
|
|
nullptr, &results);
|
|
REQUIRE(ret == MMDEPLOY_SUCCESS);
|
|
|
|
for (auto i = 0; i < mats.size(); ++i) {
|
|
std::vector<float> score(results[i].score, results[i].score + results[i].length);
|
|
MMDEPLOY_INFO("image {}, text = {}, score = {}", i, results[i].text, score);
|
|
}
|
|
|
|
mmdeploy_text_recognizer_release_result(results, (int)mats.size());
|
|
mmdeploy_text_recognizer_destroy(recognizer);
|
|
};
|
|
|
|
auto& gResources = MMDeployTestResources::Get();
|
|
auto img_list = gResources.LocateImageResources(fs::path{"mmocr"} / "images");
|
|
REQUIRE(!img_list.empty());
|
|
|
|
for (auto& backend : gResources.backends()) {
|
|
DYNAMIC_SECTION("loop backend: " << backend) {
|
|
auto model_list = gResources.LocateModelResources(fs::path{"mmocr"} / "textreg" / "backend");
|
|
REQUIRE(!model_list.empty());
|
|
for (auto& model_path : model_list) {
|
|
for (auto& device_name : gResources.device_names(backend)) {
|
|
test(device_name, model_path, img_list);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("test text detector-recognizer combo", "[.text-detector-recognizer]") {
|
|
auto test = [](const std::string& device, const string& det_model_path,
|
|
const string& reg_model_path, std::vector<string>& img_list) {
|
|
mmdeploy_text_detector_t detector{};
|
|
REQUIRE(mmdeploy_text_detector_create_by_path(det_model_path.c_str(), device.c_str(), 0,
|
|
&detector) == MMDEPLOY_SUCCESS);
|
|
mmdeploy_text_recognizer_t recognizer{};
|
|
REQUIRE(mmdeploy_text_recognizer_create_by_path(reg_model_path.c_str(), device.c_str(), 0,
|
|
&recognizer) == MMDEPLOY_SUCCESS);
|
|
|
|
vector<cv::Mat> cv_mats;
|
|
vector<mmdeploy_mat_t> mats;
|
|
for (const auto& img_path : img_list) {
|
|
cv::Mat mat = cv::imread(img_path);
|
|
REQUIRE(!mat.empty());
|
|
cv_mats.push_back(mat);
|
|
mats.push_back({mat.data, mat.rows, mat.cols, mat.channels(), MMDEPLOY_PIXEL_FORMAT_BGR,
|
|
MMDEPLOY_DATA_TYPE_UINT8});
|
|
}
|
|
|
|
mmdeploy_text_detection_t* bboxes{};
|
|
int* bbox_count{};
|
|
REQUIRE(mmdeploy_text_detector_apply(detector, mats.data(), mats.size(), &bboxes,
|
|
&bbox_count) == MMDEPLOY_SUCCESS);
|
|
|
|
mmdeploy_text_recognition_t* texts{};
|
|
|
|
REQUIRE(mmdeploy_text_recognizer_apply_bbox(recognizer, mats.data(), (int)mats.size(), bboxes,
|
|
bbox_count, &texts) == MMDEPLOY_SUCCESS);
|
|
|
|
int offset = 0;
|
|
for (auto i = 0; i < mats.size(); ++i) {
|
|
for (int j = 0; j < bbox_count[i]; ++j) {
|
|
auto& text = texts[offset + j];
|
|
std::vector<float> score(text.score, text.score + text.length);
|
|
MMDEPLOY_INFO("image {}, text = {}, score = {}", i, text.text, score);
|
|
}
|
|
offset += bbox_count[i];
|
|
}
|
|
|
|
mmdeploy_text_recognizer_release_result(texts, offset);
|
|
mmdeploy_text_detector_release_result(bboxes, bbox_count, offset);
|
|
|
|
mmdeploy_text_recognizer_destroy(recognizer);
|
|
mmdeploy_text_detector_destroy(detector);
|
|
};
|
|
|
|
auto& gResources = MMDeployTestResources::Get();
|
|
auto img_list = gResources.LocateImageResources(fs::path{"mmocr"} / "images");
|
|
REQUIRE(!img_list.empty());
|
|
|
|
for (auto& backend : gResources.backends()) {
|
|
DYNAMIC_SECTION("loop backend: " << backend) {
|
|
auto det_model_list =
|
|
gResources.LocateModelResources(fs::path{"mmocr"} / "textdet" / backend);
|
|
auto reg_model_list =
|
|
gResources.LocateModelResources(fs::path{"mmocr"} / "textreg" / backend);
|
|
REQUIRE(!det_model_list.empty());
|
|
REQUIRE(!reg_model_list.empty());
|
|
auto det_model_path = det_model_list.front();
|
|
auto reg_model_path = reg_model_list.front();
|
|
for (auto& device_name : gResources.device_names(backend)) {
|
|
test(device_name, det_model_path, reg_model_path, img_list);
|
|
}
|
|
}
|
|
}
|
|
}
|