mmdeploy/service/snpe/server/service_impl.cpp
RunningLeon 4d8ea40f55
Sync v0.7.0 to dev-1.x (#907)
* make -install -> make install (#621)

change `make -install` to `make install`

https://github.com/open-mmlab/mmdeploy/issues/618

* [Fix] fix csharp api detector release result (#620)

* fix csharp api detector release result

* fix wrong count arg of xxx_release_result in c# api

* [Enhancement] Support two-stage rotated detector TensorRT. (#530)

* upload

* add fake_multiclass_nms_rotated

* delete unused code

* align with pytorch

* Update delta_midpointoffset_rbbox_coder.py

* add trt rotated roi align

* add index feature in nms

* not good

* fix index

* add ut

* add benchmark

* move to csrc/mmdeploy

* update unit test

Co-authored-by: zytx121 <592267829@qq.com>

* Reduce mmcls version dependency (#635)

* fix shufflenetv2 with trt (#645)

* fix shufflenetv2 and pspnet

* fix ci

* remove print

* ' -> " (#654)

If there is a variable in the string, single quotes will ignored it, while double quotes will bring the variable into the string after parsing

* ' -> " (#655)

same with https://github.com/open-mmlab/mmdeploy/pull/654

* Support deployment of Segmenter (#587)

* support segmentor with ncnn

* update regression yml

* replace chunk with split to support ts

* update regression yml

* update docs

* fix segmenter ncnn inference failure brought by #477

* add test

* fix test for ncnn and trt

* fix lint

* export nn.linear to Gemm op in onnx for ncnn

* fix ci

* simplify `Expand` (#617)

* Fix typo (#625)

* Add make install in en docs

* Add make install in zh docs

* Fix typo

* Merge and add windows build

Co-authored-by: tripleMu <865626@163.com>

* [Enhancement] Fix ncnn unittest (#626)

* optmize-csp-darknet

* replace floordiv to torch.div

* update csp_darknet default implement

* fix test

* [Enhancement] TensorRT Anchor generator plugin (#646)

* custom trt anchor generator

* add ut

* add docstring, update doc

* Add partition doc and sample code (#599)

* update torch2onnx tool to support onnx partition

* add model partition of yolov3

* add cn doc

* update torch2onnx tool to support onnx partition

* add model partition of yolov3

* add cn doc

* add to index.rst

* resolve comment

* resolve comments

* fix lint

* change caption level in docs

* update docs (#624)

* Add java apis and demos (#563)

* add java classifier detector

* add segmentor

* fix lint

* add ImageRestorer java apis and demo

* remove useless count parameter for Segmentor and Restorer, add PoseDetector

* add RotatedDetection java api and demo

* add Ocr java demo and apis

* remove mmrotate ncnn java api and demo

* fix lint

* sync java api folder after rebase to master

* fix include

* remove record

* fix java apis dir path in cmake

* add java demo readme

* fix lint mdformat

* add test javaapi ci

* fix lint

* fix flake8

* fix test javaapi ci

* refactor readme.md

* fix install opencv for ci

* fix install opencv : add permission

* add all codebases and mmcv install

* add torch

* install mmdeploy

* fix image path

* fix picture path

* fix import ncnn

* fix import ncnn

* add submodule of pybind

* fix pybind submodule

* change download to git clone for submodule

* fix ncnn dir

* fix README error

* simplify the github ci

* fix ci

* fix yapf

* add JNI as required

* fix Capitalize

* fix Capitalize

* fix copyright

* ignore .class changed

* add OpenJDK installation docs

* install target of javaapi

* simplify ci

* add jar

* fix ci

* fix ci

* fix test java command

* debugging what failed

* debugging what failed

* debugging what failed

* add java version info

* install openjdk

* add java env var

* fix export

* fix export

* fix export

* fix export

* fix picture path

* fix picture path

* fix file name

* fix file name

* fix README

* remove java_api strategy

* fix python version

* format task name

* move args position

* extract common utils code

* show image class result

* add detector result

* segmentation result format

* add ImageRestorer result

* add PoseDetection java result format

* fix ci

* stage ocr

* add visualize

* move utils

* fix lint

* fix ocr bugs

* fix ci demo

* fix java classpath for ci

* fix popd

* fix ocr demo text garbled

* fix ci

* fix ci

* fix ci

* fix path of utils ci

* update the circleci config file by adding workflows both for linux, windows and linux-gpu (#368)

* update circleci by adding more workflows

* fix test workflow failure on windows platform

* fix docker exec command for SDK unittests

* Fixed tensorrt plugin not found in Windows (#672)

* update introduction.png (#674)

* [Enhancement] Add fuse select assign pass (#589)

* Add fuse select assign pass

* move code to csrc

* add config flag

* remove bool cast

* fix export sdk info of input shape (#667)

* Update get_started.md (#675)

Fix backend model assignment

* Update get_started.md (#676)

Fix backend model assignment

* [Fix] fix clang build (#677)

* fix clang build

* fix ndk build

* fix ndk build

* switch to `std::filesystem` for clang-7 and later

* Deploy the Swin Transformer on TensorRT. (#652)

* resolve conflicts

* update ut and docs

* fix ut

* refine docstring

* add comments and refine UT

* resolve comments

* resolve comments

* update doc

* add roll export

* check backend

* update regression test

* bump version to 0.6.0 (#680)

* bump vertion to 0.6.0

* update version

* pass img_metas while exporting to onnx (#681)

* pass img_metas while exporting to onnx

* remove try-catch in tools for beter debugging

* use get

* fix typo

* [Fix] fix ssd ncnn ut (#692)

* fix ssd ncnn ut

* fix yapf

* fix passing img_metas to pytorch2onnx for mmedit (#700)

* fix passing img_metas for mmdet3d (#707)

* [Fix] Fix android build (#698)

* fix android build

* fix cmake

* fix url link

* fix wrong exit code in pipeline_manager (#715)

* fix exit

* change to general exit errorcode=1

* fix passing wrong backend type (#719)

* Rename onnx2ncnn to mmdeploy_onnx2ncnn (#694)

* improvement(tools/onnx2ncnn.py): rename to mmdeploy_onnx2ncnn

* format(tools/deploy.py): clean code

* fix(init_plugins.py): improve if condition

* fix(CI): update target

* fix(test_onnx2ncnn.py): update desc

* Update init_plugins.py

* [Fix] Fix mmdet ort static shape bug (#687)

* fix shape

* add device

* fix yapf

* fix rewriter for transforms

* reverse image shape

* fix ut of distance2bbox

* fix rewriter name

* fix c4 for torchscript (#724)

* [Enhancement] Standardize C API (#634)

* unify C API naming

* fix demo and move apis/c/* -> apis/c/mmdeploy/*

* fix lint

* fix C# project

* fix Java API

* [Enhancement] Support Slide Vertex TRT (#650)

* reorgnize mmrotate

* fix

* add hbb2obb

* add ut

* fix rotated nms

* update docs

* update benchmark

* update test

* remove ort regression test, remove comment

* Fix get-started rendering issues in readthedocs (#740)

* fix mermaid markdown rendering issue in readthedocs

* fix error in C++ example

* fix error in c++ example in zh_cn get_started doc

* [Fix] set default topk for dump info (#702)

* set default topk for dump info

* remove redundant docstrings

* add ci densenet

* fix classification warnings

* fix mmcls version

* fix logger.warnings

* add version control (#754)

* fix satrn for ORT (#753)

* fix satrn for ORT

* move rewrite into pytorch

* Add inference latency test tool (#665)

* add profile tool

* remove print envs in profile tool

* set cudnn_benchmark to True

* add doc

* update tests

* fix typo

* support test with images from a directory

* update doc

* resolve comments

* [Enhancement] Add CSE ONNX pass (#647)

* Add fuse select assign pass

* move code to csrc

* add config flag

* Add fuse select assign pass

* Add CSE for ONNX

* remove useless code

* Test robot

Just test robot

* Update README.md

Revert

* [Fix] fix yolox point_generator (#758)

* fix yolox point_generator

* add a UT

* resolve comments

* fix comment lines

* limit markdown version (#773)

* [Enhancement] Better index put ONNX export. (#704)

* Add rewriter for tensor setitem

* add version check

* Upgrade Dockerfile to use TensorRT==8.2.4.2 (#706)

* Upgrade TensorRT to 8.2.4.2

* upgrade pytorch&mmcv in CPU Dockerfile

* Delete redundant port example in Docker

* change 160x160-608x608 to 64x64-608x608 for yolov3

* [Fix] reduce log verbosity & improve error reporting (#755)

* reduce log verbosity & improve error reporting

* improve error reporting

* [Enhancement] Support latest ppl.nn & ppl.cv (#564)

* support latest ppl.nn

* fix pplnn for model convertor

* fix lint

* update memory policy

* import algo from buffer

* update ppl.cv

* use `ppl.cv==0.7.0`

* document supported ppl.nn version

* skip pplnn dependency when building shared libs

* [Fix][P0] Fix for torch1.12 (#751)

* fix for torch1.12

* add comment

* fix check env (#785)

* [Fix] fix cascade mask rcnn (#787)

* fix cascade mask rcnn

* fix lint

* add regression

* [Feature] Support RoITransRoIHead (#713)

* [Feature] Support RoITransRoIHead

* Add docs

* Add mmrotate models regression test

* Add a draft for test code

* change the argument name

* fix test code

* fix minor change for not class agnostic case

* fix sample for test code

* fix sample for test code

* Add mmrotate in requirements

* Revert "Add mmrotate in requirements"

This reverts commit 043490075e6dbe4a8fb98e94b2b583b91fc5038d.

* [Fix] fix triu (#792)

* fix triu

* triu -> triu_default

* [Enhancement] Install Optimizer by setuptools (#690)

* Add fuse select assign pass

* move code to csrc

* add config flag

* Add fuse select assign pass

* Add CSE for ONNX

* remove useless code

* Install optimizer by setup tools

* fix comment

* [Feature] support MMRotate model with le135 (#788)

* support MMRotate model with le135

* cse before fuse select assign

* remove unused import

* [Fix] Support macOS build (#762)

* fix macOS build

* fix missing

* add option to build & install examples (#822)

* [Fix] Fix setup on non-linux-x64 (#811)

* fix setup

* replace long to int64_t

* [Feature] support build single sdk library (#806)

* build single lib for c api

* update csharp doc & project

* update test build

* fix test build

* fix

* update document for building android sdk (#817)

Co-authored-by: dwSun <dwsunny@icloud.com>

* [Enhancement] support kwargs in SDK python bindings (#794)

* support-kwargs

* make '__call__' as single image inference and add 'batch' API to deal with batch images inference

* fix linting error and typo

* fix lint

* improvement(sdk): add sdk code coverage (#808)

* feat(doc): add CI

* CI(sdk): add sdk coverage

* style(test): code format

* fix(CI): update coverage.info path

* improvement(CI): use internal image

* improvement(CI): push coverage info once

* [Feature] Add C++ API for SDK (#831)

* add C++ API

* unify result type & add examples

* minor fix

* install cxx API headers

* fix Mat, add more examples

* fix monolithic build & fix lint

* install examples correctly

* fix lint

* feat(tools/deploy.py): support snpe (#789)

* fix(tools/deploy.py): support snpe

* improvement(backend/snpe): review advices

* docs(backend/snpe): update build

* docs(backend/snpe): server support specify port

* docs(backend/snpe): update path

* fix(backend/snpe): time counter missing argument

* docs(backend/snpe): add missing argument

* docs(backend/snpe): update download and using

* improvement(snpe_net.cpp): load model with modeldata

* Support setup on environment with no PyTorch (#843)

* support test with multi batch (#829)

* support test with multi batch

* resolve comment

* import algorithm from buffer (#793)

* [Enhancement] build sdk python api in standard-alone manner (#810)

* build sdk python api in standard-alone manner

* enable MMDEPLOY_BUILD_SDK_MONOLITHIC and MMDEPLOY_BUILD_EXAMPLES in prebuild config

* link mmdeploy to python target when monolithic option is on

* checkin README to describe precompiled package build procedure

* use packaging.version.parse(python_version) instead of list(python_version)

* fix according to review results

* rebase master

* rollback cmake.in and apis/python/CMakeLists.txt

* reorganize files in install/example

* let cmake detect visual studio instead of specifying 2019

* rename whl name of precompiled package

* fix according to review results

* Fix SDK backend (#844)

* fix mmpose python api (#852)

* add prebuild package usage docs on windows (#816)

* add prebuild package usage docs on windows

* fix lint

* update

* try fix lint

* add en docs

* update

* update

* udpate faq

* fix typo (#862)

* [Enhancement] Improve get_started documents and bump version to 0.7.0 (#813)

* simplify commands in get_started

* add installation commands for Windows

* fix typo

* limit markdown and sphinx_markdown_tables version

* adopt html <details open> tag

* bump mmdeploy version

* bump mmdeploy version

* update get_started

* update get_started

* use python3.8 instead of python3.7

* remove duplicate section

* resolve issue #856

* update according to review results

* add reference to prebuilt_package_windows.md

* fix error when build sdk demos

* fix mmcls

Co-authored-by: Ryan_Huang <44900829+DrRyanHuang@users.noreply.github.com>
Co-authored-by: Chen Xin <xinchen.tju@gmail.com>
Co-authored-by: q.yao <yaoqian@sensetime.com>
Co-authored-by: zytx121 <592267829@qq.com>
Co-authored-by: Li Zhang <lzhang329@gmail.com>
Co-authored-by: tripleMu <gpu@163.com>
Co-authored-by: tripleMu <865626@163.com>
Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: Bryan Glen Suello <11388006+bgsuello@users.noreply.github.com>
Co-authored-by: zambranohally <63218980+zambranohally@users.noreply.github.com>
Co-authored-by: AllentDan <41138331+AllentDan@users.noreply.github.com>
Co-authored-by: tpoisonooo <khj.application@aliyun.com>
Co-authored-by: Hakjin Lee <nijkah@gmail.com>
Co-authored-by: 孙德伟 <5899962+dwSun@users.noreply.github.com>
Co-authored-by: dwSun <dwsunny@icloud.com>
Co-authored-by: Chen Xin <irexyc@gmail.com>
2022-08-19 09:30:13 +08:00

359 lines
12 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "service_impl.h"
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <string>
#include <unordered_map>
#include <vector>
#include "scope_timer.h"
#include "text_table.h"
zdl::DlSystem::Runtime_t InferenceServiceImpl::CheckRuntime(zdl::DlSystem::Runtime_t runtime,
bool& staticQuantization) {
static zdl::DlSystem::Version_t Version = zdl::SNPE::SNPEFactory::getLibraryVersion();
fprintf(stdout, "SNPE Version: %s\n", Version.asString().c_str());
if ((runtime != zdl::DlSystem::Runtime_t::DSP) && staticQuantization) {
fprintf(stderr,
"ERROR: Cannot use static quantization with CPU/GPU runtimes. "
"It is only designed for DSP/AIP runtimes.\n"
"ERROR: Proceeding without static quantization on selected "
"runtime.\n");
staticQuantization = false;
}
if (!zdl::SNPE::SNPEFactory::isRuntimeAvailable(runtime)) {
fprintf(stderr, "Selected runtime not present. Falling back to CPU.\n");
runtime = zdl::DlSystem::Runtime_t::CPU;
}
return runtime;
}
void InferenceServiceImpl::Build(std::unique_ptr<zdl::DlContainer::IDlContainer>& container,
zdl::DlSystem::Runtime_t runtime,
zdl::DlSystem::RuntimeList runtimeList,
bool useUserSuppliedBuffers,
zdl::DlSystem::PlatformConfig platformConfig) {
zdl::SNPE::SNPEBuilder snpeBuilder(container.get());
if (runtimeList.empty()) {
runtimeList.add(runtime);
}
snpe = snpeBuilder.setOutputLayers({})
.setRuntimeProcessorOrder(runtimeList)
.setUseUserSuppliedBuffers(useUserSuppliedBuffers)
.setPlatformConfig(platformConfig)
.setExecutionPriorityHint(zdl::DlSystem::ExecutionPriorityHint_t::HIGH)
.setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::SUSTAINED_HIGH_PERFORMANCE)
.build();
return;
}
void InferenceServiceImpl::SaveDLC(const ::mmdeploy::Model* request, const std::string& filename) {
auto model = request->weights();
fprintf(stdout, "saving file to %s\n", filename.c_str());
std::ofstream fout;
fout.open(filename, std::ios::binary | std::ios::out);
fout.write(model.data(), model.size());
fout.flush();
fout.close();
}
void InferenceServiceImpl::LoadFloatData(const std::string& data, std::vector<float>& vec) {
size_t len = data.size();
assert(len % sizeof(float) == 0);
const char* ptr = data.data();
for (int i = 0; i < len; i += sizeof(float)) {
vec.push_back(*(float*)(ptr + i));
}
}
::grpc::Status InferenceServiceImpl::Echo(::grpc::ServerContext* context,
const ::mmdeploy::Empty* request,
::mmdeploy::Reply* response) {
response->set_info("echo");
return Status::OK;
}
// Logic and data behind the server's behavior.
::grpc::Status InferenceServiceImpl::Init(::grpc::ServerContext* context,
const ::mmdeploy::Model* request,
::mmdeploy::Reply* response) {
zdl::SNPE::SNPEFactory::initializeLogging(zdl::DlSystem::LogLevel_t::LOG_ERROR);
zdl::SNPE::SNPEFactory::setLogLevel(zdl::DlSystem::LogLevel_t::LOG_ERROR);
if (snpe != nullptr) {
snpe.reset();
}
if (container != nullptr) {
container.reset();
}
auto model = request->weights();
container =
zdl::DlContainer::IDlContainer::open(reinterpret_cast<uint8_t*>(model.data()), model.size());
if (container == nullptr) {
fprintf(stdout, "Stage Init: load dlc failed.\n");
response->set_status(-1);
response->set_info(zdl::DlSystem::getLastErrorString());
return Status::OK;
}
fprintf(stdout, "Stage Init: load dlc success.\n");
zdl::DlSystem::Runtime_t runtime = zdl::DlSystem::Runtime_t::GPU;
if (request->has_device()) {
switch (request->device()) {
case mmdeploy::Model_Device_GPU:
runtime = zdl::DlSystem::Runtime_t::GPU;
break;
case mmdeploy::Model_Device_DSP:
runtime = zdl::DlSystem::Runtime_t::DSP;
default:
break;
}
}
if (runtime != zdl::DlSystem::Runtime_t::CPU) {
bool static_quant = false;
runtime = CheckRuntime(runtime, static_quant);
}
zdl::DlSystem::RuntimeList runtimeList;
runtimeList.add(zdl::DlSystem::Runtime_t::CPU);
runtimeList.add(runtime);
zdl::DlSystem::PlatformConfig platformConfig;
{
ScopeTimer timer("build snpe");
Build(container, runtime, runtimeList, false, platformConfig);
}
if (snpe == nullptr) {
response->set_status(-1);
response->set_info(zdl::DlSystem::getLastErrorString());
}
// setup logger
auto logger_opt = snpe->getDiagLogInterface();
if (!logger_opt) throw std::runtime_error("SNPE failed to obtain logging interface");
auto logger = *logger_opt;
auto opts = logger->getOptions();
static std::string OutputDir = "./output/";
opts.LogFileDirectory = OutputDir;
if (!logger->setOptions(opts)) {
std::cerr << "Failed to set options" << std::endl;
return Status::OK;
}
if (!logger->start()) {
std::cerr << "Failed to start logger" << std::endl;
return Status::OK;
}
const auto& inputTensorNamesRef = snpe->getInputTensorNames();
const auto& inputTensorNames = *inputTensorNamesRef;
inputTensors.resize(inputTensorNames.size());
for (int i = 0; i < inputTensorNames.size(); ++i) {
const char* pname = inputTensorNames.at(i);
const auto& shape_opt = snpe->getInputDimensions(pname);
const auto& shape = *shape_opt;
fprintf(stdout, "Stage Init: input tensor info:\n");
switch (shape.rank()) {
case 1:
fprintf(stdout, "name: %s, shape: [%ld]\n", pname, shape[0]);
break;
case 2:
fprintf(stdout, "name: %s, shape: [%ld,%ld]\n", pname, shape[0], shape[1]);
break;
case 3:
fprintf(stdout, "name: %s, shape: [%ld,%ld,%ld]\n", pname, shape[0], shape[1], shape[2]);
break;
case 4:
fprintf(stdout, "name: %s, shape: [%ld,%ld,%ld,%ld]\n", pname, shape[0], shape[1], shape[2],
shape[3]);
break;
}
inputTensors[i] = zdl::SNPE::SNPEFactory::getTensorFactory().createTensor(shape);
inputTensorMap.add(pname, inputTensors[i].get());
}
response->set_status(0);
response->set_info("Stage Init: success");
return Status::OK;
}
std::string InferenceServiceImpl::ContentStr(zdl::DlSystem::ITensor* pTensor) {
std::string str;
const size_t N = std::min(5UL, pTensor->getSize());
auto it = pTensor->cbegin();
for (int i = 0; i < N; ++i) {
str += std::to_string(*(it + i));
str += " ";
}
str += "..";
str += std::to_string(*(it + pTensor->getSize() - 1));
return str;
}
std::string InferenceServiceImpl::ShapeStr(zdl::DlSystem::ITensor* pTensor) {
std::string str;
str += "[";
auto shape = pTensor->getShape();
for (int i = 0; i < shape.rank(); ++i) {
str += std::to_string(shape[i]);
str += ",";
}
str += ']';
return str;
}
::grpc::Status InferenceServiceImpl::OutputNames(::grpc::ServerContext* context,
const ::mmdeploy::Empty* request,
::mmdeploy::Names* response) {
const auto& outputTensorNamesRef = snpe->getOutputTensorNames();
const auto& outputTensorNames = *outputTensorNamesRef;
for (int i = 0; i < outputTensorNames.size(); ++i) {
response->add_names(outputTensorNames.at(i));
}
return Status::OK;
}
::grpc::Status InferenceServiceImpl::Inference(::grpc::ServerContext* context,
const ::mmdeploy::TensorList* request,
::mmdeploy::Reply* response) {
// Get input names and number
const auto& inputTensorNamesRef = snpe->getInputTensorNames();
if (!inputTensorNamesRef) {
response->set_status(-1);
response->set_info(zdl::DlSystem::getLastErrorString());
return Status::OK;
}
const auto& inputTensorNames = *inputTensorNamesRef;
if (inputTensorNames.size() != request->data_size()) {
response->set_status(-1);
response->set_info("Stage Inference: input names count not match !");
return Status::OK;
}
helper::TextTable table("Inference");
table.padding(1);
table.add("type").add("name").add("shape").add("content").eor();
// Load input/output buffers with TensorMap
{
// ScopeTimer timer("convert input");
for (int i = 0; i < request->data_size(); ++i) {
auto tensor = request->data(i);
std::vector<float> float_input;
LoadFloatData(tensor.data(), float_input);
zdl::DlSystem::ITensor* ptensor = inputTensorMap.getTensor(tensor.name().c_str());
if (ptensor == nullptr) {
fprintf(stderr, "Stage Inference: name: %s not existed in input tensor map\n",
tensor.name().c_str());
response->set_status(-1);
response->set_info("cannot find name in input tensor map.");
return Status::OK;
}
if (float_input.size() != ptensor->getSize()) {
fprintf(stderr, "Stage Inference: input size not match, get %ld, expect %ld.\n",
float_input.size(), ptensor->getSize());
response->set_status(-1);
response->set_info(zdl::DlSystem::getLastErrorString());
return Status::OK;
}
std::copy(float_input.begin(), float_input.end(), ptensor->begin());
table.add("IN").add(tensor.name()).add(ShapeStr(ptensor)).add(ContentStr(ptensor)).eor();
}
}
// A tensor map for SNPE execution outputs
zdl::DlSystem::TensorMap outputTensorMap;
// Execute the multiple input tensorMap on the model with SNPE
bool success = false;
{
ScopeTimer timer("execute", false);
success = snpe->execute(inputTensorMap, outputTensorMap);
if (!success) {
response->set_status(-1);
response->set_info(zdl::DlSystem::getLastErrorString());
return Status::OK;
}
table.add("EXECUTE").add(std::to_string(timer.cost()) + "ms").eor();
}
{
// ScopeTimer timer("convert output");
auto out_names = outputTensorMap.getTensorNames();
for (size_t i = 0; i < out_names.size(); ++i) {
const char* name = out_names.at(i);
zdl::DlSystem::ITensor* ptensor = outputTensorMap.getTensor(name);
table.add("OUT").add(std::string(name)).add(ShapeStr(ptensor)).add(ContentStr(ptensor)).eor();
const size_t data_length = ptensor->getSize();
std::string result;
result.resize(sizeof(float) * data_length);
int j = 0;
for (auto it = ptensor->cbegin(); it != ptensor->cend(); ++it, j += sizeof(float)) {
float f = *it;
memcpy(&result[0] + j, reinterpret_cast<char*>(&f), sizeof(float));
}
auto shape = ptensor->getShape();
::mmdeploy::Tensor* pData = response->add_data();
pData->set_dtype("float32");
pData->set_name(name);
pData->set_data(result);
for (int j = 0; j < shape.rank(); ++j) {
pData->add_shape(shape[j]);
}
}
}
std::cout << table << std::endl << std::endl;
// build output status
response->set_status(0);
response->set_info("Stage Inference: success");
return Status::OK;
}
::grpc::Status InferenceServiceImpl::Destroy(::grpc::ServerContext* context,
const ::mmdeploy::Empty* request,
::mmdeploy::Reply* response) {
snpe.reset();
container.reset();
inputTensors.clear();
response->set_status(0);
zdl::SNPE::SNPEFactory::terminateLogging();
return Status::OK;
}