mmdeploy/README_zh-CN.md

194 lines
11 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<div align="center">
<img src="resources/mmdeploy-logo.png" width="450"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
<div>&nbsp;</div>
</div>
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdeploy.readthedocs.io/zh_CN/1.x/)
[![badge](https://github.com/open-mmlab/mmdeploy/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdeploy/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdeploy/branch/1.x/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdeploy)
[![license](https://img.shields.io/github/license/open-mmlab/mmdeploy.svg)](https://github.com/open-mmlab/mmdeploy/tree/1.x/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)
[![open issues](https://img.shields.io/github/issues-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)
[English](README.md) | 简体中文
## 介绍
MMDeploy 是 [OpenMMLab](https://openmmlab.com/) 模型部署工具箱,**为各算法库提供统一的部署体验**。基于 MMDeploy开发者可以轻松从训练 repo 生成指定硬件所需 SDK省去大量适配时间。
## 架构简析
<div align="center">
<img src="resources/introduction.png"/>
</div>
## 特性简介
### 支持超多 OpenMMLab 算法库
- [mmcls](docs/zh_cn/04-supported-codebases/mmcls.md)
- [mmdet](docs/zh_cn/04-supported-codebases/mmdet.md)
- [mmseg](docs/zh_cn/04-supported-codebases/mmseg.md)
- [mmedit](docs/zh_cn/04-supported-codebases/mmedit.md)
- [mmocr](docs/zh_cn/04-supported-codebases/mmocr.md)
- [mmpose](docs/zh_cn/04-supported-codebases/mmpose.md)
- [mmdet3d](docs/zh_cn/04-supported-codebases/mmdet3d.md)
- [mmrotate](docs/zh_cn/04-supported-codebases/mmrotate.md)
- [mmaction2](docs/zh_cn/04-supported-codebases/mmaction2.md)
### 支持多种推理后端
支持的设备平台和推理引擎如下表所示。benchmark请参考[这里](docs/zh_cn/03-benchmark/benchmark.md)
| Device / Platform | Linux | Windows | macOS | Android |
| ----------------- | ------------------------------------------------------------------------ | --------------------------------------- | -------- | ---------------- |
| x86_64 CPU | ✔ONNX Runtime<br>pplnn<br>ncnn<br>OpenVINO<br>LibTorch<br>TVM | ✔ONNX Runtime<br>OpenVINO | - | - |
| ARM CPU | ✔ncnn | - | - | ✔ncnn |
| RISC-V | ✔ncnn | - | - | - |
| NVIDIA GPU | ✔ONNX Runtime<br>TensorRT<br>pplnn<br>LibTorch<br>TVM | ✔ONNX Runtime<br>TensorRT<br>pplnn | - | - |
| NVIDIA Jetson | ✔TensorRT | ✔TensorRT | - | - |
| Huawei ascend310 | ✔CANN | - | - | - |
| Rockchip | ✔RKNN | - | - | - |
| Apple M1 | - | - | ✔CoreML | - |
| Adreno GPU | - | - | - | ✔ncnn<br>SNPE |
| Hexagon DSP | - | - | - | ✔SNPE |
### SDK 可高度定制化
- Transform 数据预处理
- Net 推理
- Module 后处理
## [中文文档](https://mmdeploy.readthedocs.io/zh_CN/1.x/)
- [快速上手](docs/zh_cn/get_started.md)
- [编译](docs/zh_cn/01-how-to-build/build_from_source.md)
- [一键式脚本安装](docs/zh_cn/01-how-to-build/build_from_script.md)
- [Build from Docker](docs/zh_cn/01-how-to-build/build_from_docker.md)
- [Build for Linux](docs/zh_cn/01-how-to-build/linux-x86_64.md)
- [Build for macOS](docs/zh_cn/01-how-to-build/macos-arm64.md)
- [Build for Win10](docs/zh_cn/01-how-to-build/windows.md)
- [Build for Android](docs/zh_cn/01-how-to-build/android.md)
- [Build for Jetson](docs/zh_cn/01-how-to-build/jetsons.md)
- [Build for SNPE](docs/zh_cn/01-how-to-build/snpe.md)
- [Cross Build for aarch64](docs/zh_cn/01-how-to-build/cross_build_ncnn_aarch64.md)
- 使用
- [把模型转换到推理 Backend](docs/zh_cn/02-how-to-run/convert_model.md)
- [配置转换参数](docs/zh_cn/02-how-to-run/write_config.md)
- [量化](docs/zh_cn/02-how-to-run/quantize_model.md)
- [测试转换完成的模型](docs/zh_cn/02-how-to-run/profile_model.md)
- [工具集介绍](docs/zh_cn/02-how-to-run/useful_tools.md)
- 开发指南
- [软件架构](docs/zh_cn/07-developer-guide/architecture.md)
- [支持新模型](docs/zh_cn/07-developer-guide/support_new_model.md)
- [增加推理 backend](docs/zh_cn/07-developer-guide/support_new_backend.md)
- [模型分块](docs/zh_cn/07-developer-guide/partition_model.md)
- [测试重写模型](docs/zh_cn/07-developer-guide/test_rewritten_models.md)
- [backend 算子测试](docs/zh_cn/07-developer-guide/add_backend_ops_unittest.md)
- [回归测试](docs/zh_cn/07-developer-guide/regression_test.md)
- 各 backend 自定义算子列表
- [ncnn](docs/zh_cn/06-custom-ops/ncnn.md)
- [onnxruntime](docs/zh_cn/06-custom-ops/onnxruntime.md)
- [tensorrt](docs/zh_cn/06-custom-ops/tensorrt.md)
- [FAQ](docs/zh_cn/faq.md)
- [贡献者手册](.github/CONTRIBUTING.md)
## 新人解说
- [01 术语解释、加载第一个模型](docs/zh_cn/tutorial/01_introduction_to_model_deployment.md)
- [02 部署常见问题](docs/zh_cn/tutorial/02_challenges.md)
- [03 torch转onnx](docs/zh_cn/tutorial/03_pytorch2onnx.md)
- [04 让torch支持更多onnx算子](docs/zh_cn/tutorial/04_onnx_custom_op.md)
- [05 调试onnx模型](docs/zh_cn/tutorial/05_onnx_model_editing.md)
## 基准与模型库
基准和支持的模型列表可以在[基准](https://mmdeploy.readthedocs.io/zh_CN/1.x/03-benchmark/benchmark.html)和[模型列表](https://mmdeploy.readthedocs.io/en/1.x/03-benchmark/supported_models.html)中获得。
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMDeploy 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
- [OpenPPL](https://github.com/openppl-public/ppl.nn): 高性能推理框架底层库
- [OpenVINO](https://github.com/openvinotoolkit/openvino): AI 推理优化和部署框架
- [ncnn](https://github.com/tencent/ncnn): 为手机端极致优化的高性能神经网络前向计算框架
## 引用
如果您在研究中使用了本项目的代码或者性能基准,请参考如下 bibtex 引用 MMDeploy:
```BibTeX
@misc{=mmdeploy,
title={OpenMMLab's Model Deployment Toolbox.},
author={MMDeploy Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdeploy}},
year={2021}
}
```
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## OpenMMLab 的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱和基准测试
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=MSMAfWOe)或添加微信小助手”OpenMMLabwx“加入官方交流微信群。
<div align="center">
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/_static/zhihu_qrcode.jpg" height="400" />
<img src="resources/qq_group_qrcode.jpg" height="400" />
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/master/docs/en/_static/wechat_qrcode.jpg" height="400" />
</div>
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等您来撩 💗OpenMMLab 社区期待您的加入 👬