186 lines
5.6 KiB
C++
186 lines
5.6 KiB
C++
|
|
#include "mmdeploy/archive/json_archive.h"
|
|
#include "mmdeploy/core/logger.h"
|
|
#include "mmdeploy/core/mat.h"
|
|
#include "mmdeploy/core/module.h"
|
|
#include "mmdeploy/core/registry.h"
|
|
#include "mmdeploy/core/utils/formatter.h"
|
|
#include "mmdeploy/core/value.h"
|
|
#include "mmdeploy/detector.h"
|
|
#include "mmdeploy/experimental/module_adapter.h"
|
|
#include "mmdeploy/pipeline.h"
|
|
#include "mmdeploy/pose_detector.h"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
const auto config_json = R"(
|
|
{
|
|
"type": "Pipeline",
|
|
"input": "img",
|
|
"output": ["human", "keypoints"],
|
|
"tasks": [
|
|
{
|
|
"type": "Inference",
|
|
"input": "img",
|
|
"output": "dets",
|
|
"params": { "model": "TBD" }
|
|
},
|
|
{
|
|
"type": "Task",
|
|
"module": "FilterBbox",
|
|
"input": "dets",
|
|
"output": "human"
|
|
},
|
|
{
|
|
"type": "Pipeline",
|
|
"input": ["bboxes=*human", "imgs=+img"],
|
|
"tasks": [
|
|
{
|
|
"type": "Task",
|
|
"module": "AddBboxField",
|
|
"input": ["imgs", "bboxes"],
|
|
"output": "imgs_with_bboxes"
|
|
},
|
|
{
|
|
"type": "Inference",
|
|
"input": "imgs_with_bboxes",
|
|
"output": "keypoints",
|
|
"params": { "model": "TBD" }
|
|
}
|
|
],
|
|
"output": "*keypoints"
|
|
}
|
|
]
|
|
}
|
|
)"_json;
|
|
|
|
using namespace mmdeploy;
|
|
|
|
class AddBboxField {
|
|
public:
|
|
Result<Value> operator()(const Value& img, const Value& dets) {
|
|
auto _img = img["ori_img"].get<framework::Mat>();
|
|
cv::Rect rect(0, 0, _img.width(), _img.height());
|
|
if (dets.is_object() && dets.contains("bbox")) {
|
|
auto _box = from_value<std::vector<float>>(dets["bbox"]);
|
|
rect = cv::Rect(cv::Rect2f(cv::Point2f(_box[0], _box[1]), cv::Point2f(_box[2], _box[3])));
|
|
}
|
|
return Value{
|
|
{"ori_img", _img}, {"bbox", {rect.x, rect.y, rect.width, rect.height}}, {"rotation", 0.f}};
|
|
}
|
|
};
|
|
|
|
MMDEPLOY_REGISTER_FACTORY_FUNC(Module, (AddBboxField, 0),
|
|
[](const Value&) { return CreateTask(AddBboxField{}); });
|
|
|
|
Result<Value> FilterBbox(const Value& dets) {
|
|
Value::Array rets;
|
|
for (const auto& det : dets) {
|
|
if (det["label_id"].get<int>() == 0 && det["score"].get<float>() >= 0.3) {
|
|
rets.push_back(det);
|
|
}
|
|
}
|
|
return rets;
|
|
}
|
|
|
|
MMDEPLOY_REGISTER_FACTORY_FUNC(Module, (FilterBbox, 0),
|
|
[](const Value&) { return CreateTask(FilterBbox); });
|
|
|
|
static std::vector<std::pair<int, int>> skeleton{
|
|
{15, 13}, {13, 11}, {16, 14}, {14, 12}, {11, 12}, {5, 11}, {6, 12}, {5, 6}, {5, 7}, {6, 8},
|
|
{7, 9}, {8, 10}, {1, 2}, {0, 1}, {0, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}};
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc != 5) {
|
|
MMDEPLOY_INFO("usage: det_pose device det_model pose_model image");
|
|
return 0;
|
|
}
|
|
const auto device_name = argv[1];
|
|
const auto det_model_path = argv[2];
|
|
const auto pose_model_path = argv[3];
|
|
const auto image_path = argv[4];
|
|
|
|
auto config = from_json<Value>(config_json);
|
|
config["tasks"][0]["params"]["model"] = det_model_path;
|
|
config["tasks"][2]["tasks"][1]["params"]["model"] = pose_model_path;
|
|
|
|
mmdeploy_context_t context{};
|
|
mmdeploy_context_create(&context);
|
|
|
|
auto thread_pool = mmdeploy_executor_create_thread_pool(4);
|
|
auto single_thread = mmdeploy_executor_create_thread();
|
|
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "preprocess", thread_pool);
|
|
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "net", single_thread);
|
|
mmdeploy_context_add(context, MMDEPLOY_TYPE_SCHEDULER, "postprocess", thread_pool);
|
|
|
|
mmdeploy_device_t device{};
|
|
mmdeploy_device_create(device_name, 0, &device);
|
|
mmdeploy_context_add(context, MMDEPLOY_TYPE_DEVICE, nullptr, device);
|
|
|
|
mmdeploy_pipeline_t pipeline{};
|
|
if (auto ec = mmdeploy_pipeline_create_v3((mmdeploy_value_t)&config, context, &pipeline)) {
|
|
MMDEPLOY_ERROR("failed to create pipeline: {}", ec);
|
|
return -1;
|
|
}
|
|
|
|
cv::Mat mat = cv::imread(image_path);
|
|
if (!mat.data) {
|
|
MMDEPLOY_ERROR("invalid image path: {}", image_path);
|
|
}
|
|
framework::Mat img(mat.rows, mat.cols, PixelFormat::kBGR, DataType::kINT8, mat.data,
|
|
framework::Device(0));
|
|
|
|
Value input{{{{"ori_img", img}}}};
|
|
|
|
mmdeploy_value_t tmp{};
|
|
mmdeploy_pipeline_apply(pipeline, (mmdeploy_value_t)&input, &tmp);
|
|
|
|
mmdeploy_detection_t* dets{};
|
|
int* det_count{};
|
|
mmdeploy_detector_get_result(tmp, &dets, &det_count);
|
|
|
|
auto output = std::move(*(Value*)tmp);
|
|
mmdeploy_value_destroy(tmp);
|
|
|
|
// result of second output
|
|
auto& pose = output[1];
|
|
|
|
mmdeploy_pose_detection_t* kps{};
|
|
mmdeploy_pose_detector_get_result((mmdeploy_value_t)&pose, &kps);
|
|
|
|
MMDEPLOY_INFO("{}", *det_count);
|
|
|
|
for (int i = 0; i < *det_count; ++i) {
|
|
if (dets[i].label_id != 0 || dets[i].score < 0.3) {
|
|
continue;
|
|
}
|
|
const auto& bbox = dets[i].bbox;
|
|
cv::Point p1(bbox.left, bbox.top);
|
|
cv::Point p2(bbox.right, bbox.bottom);
|
|
cv::rectangle(mat, p1, p2, cv::Scalar(0, 255, 0));
|
|
for (int j = 0; j < kps[i].length; ++j) {
|
|
cv::Point p(kps[i].point[j].x, kps[i].point[j].y);
|
|
cv::circle(mat, p, 1, cv::Scalar(0, 255, 255), 2, cv::LINE_AA);
|
|
}
|
|
for (int j = 0; j < skeleton.size(); ++j) {
|
|
int u = skeleton[j].first;
|
|
cv::Point p_u(kps[i].point[u].x, kps[i].point[u].y);
|
|
int v = skeleton[j].second;
|
|
cv::Point p_v(kps[i].point[v].x, kps[i].point[v].y);
|
|
cv::line(mat, p_u, p_v, cv::Scalar(0, 255, 255), 1, cv::LINE_AA);
|
|
}
|
|
}
|
|
|
|
mmdeploy_pose_detector_release_result(kps, pose.size());
|
|
|
|
cv::imwrite("output_det_pose.jpg", mat);
|
|
|
|
mmdeploy_pipeline_destroy(pipeline);
|
|
|
|
mmdeploy_context_destroy(context);
|
|
mmdeploy_scheduler_destroy(single_thread);
|
|
mmdeploy_scheduler_destroy(thread_pool);
|
|
|
|
return 0;
|
|
}
|