mmdeploy/demo/csrc/c/video_recognition.cpp

112 lines
3.4 KiB
C++

#include <fstream>
#include <map>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <set>
#include <string>
#include <vector>
#include "mmdeploy/video_recognizer.h"
void SampleFrames(const char* video_path, std::map<int, cv::Mat>& buffer,
std::vector<mmdeploy_mat_t>& clips, int clip_len, int frame_interval = 1,
int num_clips = 1) {
cv::VideoCapture cap = cv::VideoCapture(video_path);
if (!cap.isOpened()) {
fprintf(stderr, "failed to load video: %s\n", video_path);
exit(1);
}
int num_frames = cap.get(cv::CAP_PROP_FRAME_COUNT);
printf("num_frames %d\n", num_frames);
int ori_clip_len = clip_len * frame_interval;
float avg_interval = (num_frames - ori_clip_len + 1.f) / num_clips;
std::vector<int> frame_inds;
for (int i = 0; i < num_clips; i++) {
int clip_offset = i * avg_interval + avg_interval / 2.0;
for (int j = 0; j < clip_len; j++) {
int ind = (j * frame_interval + clip_offset) % num_frames;
if (num_frames <= ori_clip_len - 1) {
ind = j % num_frames;
}
frame_inds.push_back(ind);
}
}
std::vector<int> unique_inds(frame_inds.begin(), frame_inds.end());
std::sort(unique_inds.begin(), unique_inds.end());
auto last = std::unique(unique_inds.begin(), unique_inds.end());
unique_inds.erase(last, unique_inds.end());
int ind = 0;
for (int i = 0; i < unique_inds.size(); i++) {
int tid = unique_inds[i];
cv::Mat frame;
while (ind < tid) {
cap.read(frame);
ind++;
}
cap.read(frame);
buffer[tid] = frame;
ind++;
}
clips.resize(frame_inds.size());
for (int i = 0; i < frame_inds.size(); i++) {
auto& img = buffer[frame_inds[i]];
mmdeploy_mat_t mat{
img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8};
clips[i] = mat;
}
}
int main(int argc, char* argv[]) {
if (argc != 7) {
fprintf(stderr,
"usage:\n video_recognition device_name dump_model_directory video_path clip_len "
"frame_interval num_clips \n");
return 1;
}
auto device_name = argv[1];
auto model_path = argv[2];
auto video_path = argv[3];
int clip_len = std::stoi(argv[4]);
int frame_interval = std::stoi(argv[5]);
int num_clips = std::stoi(argv[6]);
std::map<int, cv::Mat> buffer;
std::vector<mmdeploy_mat_t> clips;
std::vector<mmdeploy_video_sample_info_t> clip_info;
SampleFrames(video_path, buffer, clips, clip_len, frame_interval, num_clips);
clip_info.push_back({clip_len, num_clips});
mmdeploy_video_recognizer_t recognizer{};
int status{};
status = mmdeploy_video_recognizer_create_by_path(model_path, device_name, 0, &recognizer);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create recognizer, code: %d\n", (int)status);
return 1;
}
mmdeploy_video_recognition_t* res{};
int* res_count{};
status = mmdeploy_video_recognizer_apply(recognizer, clips.data(), clip_info.data(), 1, &res,
&res_count);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to apply classifier, code: %d\n", (int)status);
return 1;
}
for (int i = 0; i < res_count[0]; ++i) {
fprintf(stderr, "label: %d, score: %.4f\n", res[i].label_id, res[i].score);
}
mmdeploy_video_recognizer_release_result(res, res_count, 1);
mmdeploy_video_recognizer_destroy(recognizer);
return 0;
}