mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
113 lines
4.7 KiB
C++
113 lines
4.7 KiB
C++
// modify from
|
|
// https://github.com/NVIDIA/TensorRT/tree/master/plugin/batchedNMSPlugin
|
|
#ifndef TRT_KERNEL_H
|
|
#define TRT_KERNEL_H
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
#include "cublas_v2.h"
|
|
#include "trt_plugin_helper.hpp"
|
|
|
|
using namespace nvinfer1;
|
|
#define DEBUG_ENABLE 0
|
|
|
|
template <typename T>
|
|
struct Bbox {
|
|
T xmin, ymin, xmax, ymax;
|
|
Bbox(T xmin, T ymin, T xmax, T ymax)
|
|
: xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax) {}
|
|
Bbox() = default;
|
|
};
|
|
|
|
template <typename T>
|
|
struct BboxInfo {
|
|
T conf_score;
|
|
int label;
|
|
int bbox_idx;
|
|
bool kept;
|
|
BboxInfo(T conf_score, int label, int bbox_idx, bool kept)
|
|
: conf_score(conf_score), label(label), bbox_idx(bbox_idx), kept(kept) {}
|
|
BboxInfo() = default;
|
|
};
|
|
|
|
int8_t* alignPtr(int8_t* ptr, uintptr_t to);
|
|
|
|
int8_t* nextWorkspacePtr(int8_t* ptr, uintptr_t previousWorkspaceSize);
|
|
|
|
void setUniformOffsets(cudaStream_t stream, int num_segments, int offset,
|
|
int* d_offsets);
|
|
|
|
pluginStatus_t allClassNMS(cudaStream_t stream, int num, int num_classes,
|
|
int num_preds_per_class, int top_k,
|
|
float nms_threshold, bool share_location,
|
|
bool isNormalized, DataType DT_SCORE,
|
|
DataType DT_BBOX, void* bbox_data,
|
|
void* beforeNMS_scores, void* beforeNMS_index_array,
|
|
void* afterNMS_scores, void* afterNMS_index_array,
|
|
bool flipXY = false);
|
|
|
|
size_t detectionForwardBBoxDataSize(int N, int C1, DataType DT_BBOX);
|
|
|
|
size_t detectionForwardBBoxPermuteSize(bool shareLocation, int N, int C1,
|
|
DataType DT_BBOX);
|
|
|
|
size_t sortScoresPerClassWorkspaceSize(int num, int num_classes,
|
|
int num_preds_per_class,
|
|
DataType DT_CONF);
|
|
|
|
size_t sortScoresPerImageWorkspaceSize(int num_images, int num_items_per_image,
|
|
DataType DT_SCORE);
|
|
|
|
pluginStatus_t sortScoresPerImage(cudaStream_t stream, int num_images,
|
|
int num_items_per_image, DataType DT_SCORE,
|
|
void* unsorted_scores,
|
|
void* unsorted_bbox_indices,
|
|
void* sorted_scores,
|
|
void* sorted_bbox_indices, void* workspace);
|
|
|
|
pluginStatus_t sortScoresPerClass(cudaStream_t stream, int num, int num_classes,
|
|
int num_preds_per_class,
|
|
int background_label_id,
|
|
float confidence_threshold, DataType DT_SCORE,
|
|
void* conf_scores_gpu, void* index_array_gpu,
|
|
void* workspace);
|
|
|
|
size_t calculateTotalWorkspaceSize(size_t* workspaces, int count);
|
|
|
|
pluginStatus_t permuteData(cudaStream_t stream, int nthreads, int num_classes,
|
|
int num_data, int num_dim, DataType DT_DATA,
|
|
bool confSigmoid, const void* data, void* new_data);
|
|
|
|
size_t detectionForwardPreNMSSize(int N, int C2);
|
|
|
|
size_t detectionForwardPostNMSSize(int N, int numClasses, int topK);
|
|
|
|
pluginStatus_t gatherNMSOutputs(cudaStream_t stream, bool shareLocation,
|
|
int numImages, int numPredsPerClass,
|
|
int numClasses, int topK, int keepTopK,
|
|
DataType DT_BBOX, DataType DT_SCORE,
|
|
const void* indices, const void* scores,
|
|
const void* bboxData, void* nmsedDets,
|
|
void* nmsedLabels, bool clipBoxes = true);
|
|
|
|
size_t detectionInferenceWorkspaceSize(bool shareLocation, int N, int C1,
|
|
int C2, int numClasses,
|
|
int numPredsPerClass, int topK,
|
|
DataType DT_BBOX, DataType DT_SCORE);
|
|
|
|
pluginStatus_t nmsInference(cudaStream_t stream, int N, int boxesSize,
|
|
int scoresSize, bool shareLocation,
|
|
int backgroundLabelId, int numPredsPerClass,
|
|
int numClasses, int topK, int keepTopK,
|
|
float scoreThreshold, float iouThreshold,
|
|
DataType DT_BBOX, const void* locData,
|
|
DataType DT_SCORE, const void* confData,
|
|
void* nmsedDets, void* nmsedLabels, void* workspace,
|
|
bool isNormalized = true, bool confSigmoid = false,
|
|
bool clipBoxes = true);
|
|
|
|
#endif
|