mmdeploy/docs/zh_cn/03-benchmark/quantization.md

28 lines
2.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 量化测试结果
目前 mmdeploy 支持 ncnn 量化
## ncnn 量化
### 分类任务
| model | dataset | fp32 top-1 (%) | int8 top-1 (%) |
| :--------------------------------------------------------------------------------------------------------------------------: | :---------: | :------------: | :------------: |
| [ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py) | Cifar10 | 94.82 | 94.83 |
| [ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | ImageNet-1k | 77.90 | 78.20\* |
| [MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | ImageNet-1k | 71.86 | 71.43\* |
| [HRNet-W18\*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | ImageNet-1k | 76.75 | 76.25\* |
备注:
- 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间仅用部分测试集4000/50000
- 量化后精度会有差异,分类模型涨点 1% 以内是正常情况
### OCR 检测任务
| model | dataset | fp32 hmean | int8 hmean |
| :---------------------------------------------------------------------------------------------------------------: | :-------: | :--------: | :------------: |
| [PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | ICDAR2015 | 0.795 | 0.792 @thr=0.9 |
备注:[mmocr](https://github.com/open-mmlab/mmocr) 使用 `shapely` 计算 IoU实现方法会导致轻微的精度差异