mmdeploy/demo/csrc/cpp/detector.cxx

70 lines
2.1 KiB
C++

#include "mmdeploy/detector.hpp"
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <string>
int main(int argc, char* argv[]) {
if (argc != 4) {
fprintf(stderr, "usage:\n object_detection device_name model_path image_path\n");
return 1;
}
auto device_name = argv[1];
auto model_path = argv[2];
auto image_path = argv[3];
cv::Mat img = cv::imread(image_path);
if (!img.data) {
fprintf(stderr, "failed to load image: %s\n", image_path);
return 1;
}
mmdeploy::Model model(model_path);
mmdeploy::Detector detector(model, mmdeploy::Device{device_name, 0});
auto dets = detector.Apply(img);
fprintf(stdout, "bbox_count=%d\n", (int)dets.size());
for (int i = 0; i < dets.size(); ++i) {
const auto& box = dets[i].bbox;
const auto& mask = dets[i].mask;
fprintf(stdout, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n",
i, box.left, box.top, box.right, box.bottom, dets[i].label_id, dets[i].score);
// skip detections with invalid bbox size (bbox height or width < 1)
if ((box.right - box.left) < 1 || (box.bottom - box.top) < 1) {
continue;
}
// skip detections less than specified score threshold
if (dets[i].score < 0.3) {
continue;
}
// generate mask overlay if model exports masks
if (mask != nullptr) {
fprintf(stdout, "mask %d, height=%d, width=%d\n", i, mask->height, mask->width);
cv::Mat imgMask(mask->height, mask->width, CV_8UC1, &mask->data[0]);
auto x0 = std::max(std::floor(box.left) - 1, 0.f);
auto y0 = std::max(std::floor(box.top) - 1, 0.f);
cv::Rect roi((int)x0, (int)y0, mask->width, mask->height);
// split the RGB channels, overlay mask to a specific color channel
cv::Mat ch[3];
split(img, ch);
int col = 0; // int col = i % 3;
cv::bitwise_or(imgMask, ch[col](roi), ch[col](roi));
merge(ch, 3, img);
}
cv::rectangle(img, cv::Point{(int)box.left, (int)box.top},
cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});
}
cv::imwrite("output_detection.png", img);
return 0;
}