46 lines
2.1 KiB
Markdown
46 lines
2.1 KiB
Markdown
# MMDetection3d Support
|
|
|
|
MMDetection3d is a next-generation platform for general 3D object detection. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
|
|
|
|
## MMDetection3d installation tutorial
|
|
|
|
Please refer to [getting_started.md](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/getting_started.md) for installation.
|
|
|
|
## Example
|
|
|
|
```bash
|
|
export MODEL_PATH=https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth
|
|
|
|
python tools/deploy.py \
|
|
configs/mmdet3d/voxel-detection/voxel-detection_tensorrt_dynamic.py \
|
|
${MMDET3D_DIR}/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py \
|
|
${MODEL_PATH} \
|
|
${MMDET3D_DIR}/demo/data/kitti/kitti_000008.bin \
|
|
--work-dir \
|
|
work_dir \
|
|
--show \
|
|
--device \
|
|
cuda:0
|
|
```
|
|
|
|
## List of MMDetection3d models supported by MMDeploy
|
|
|
|
| Model | Task | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVINO | Model config |
|
|
| :----------: | :------------: | :---------: | :------: | :--: | :---: | :------: | :------------------------------------------------------------------------------------: |
|
|
| PointPillars | VoxelDetection | Y | Y\* | N | N | Y | [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pointpillars) |
|
|
|
|
1. mmdet3d models on **cu102+TRT8.4** can be visualized normally. For cuda-11 or TRT8.2 users, these issues should be checked
|
|
|
|
- [TRT8.2 assertion `is_tensor`](https://github.com/NVIDIA/TensorRT/issues/1541)
|
|
- [TRT8.4 output NaN](https://github.com/NVIDIA/TensorRT/issues/2338)
|
|
|
|
2. Voxel detection onnx model excludes model.voxelize layer and model post process, and you can use python api to call these func.
|
|
|
|
Example:
|
|
|
|
```python
|
|
from mmdeploy.codebase.mmdet3d.deploy import VoxelDetectionModel
|
|
VoxelDetectionModel.voxelize(...)
|
|
VoxelDetectionModel.post_process(...)
|
|
```
|