mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* add acl backend * support dynamic batch size and dynamic image size * add preliminary ascend backend * support dtypes other than float * support dynamic_dims in SDK * fix dynamic batch size * better error handling * remove debug info * [WIP] dynamic shape support * fix static shape * fix dynamic batch size * add retinanet support * fix dynamic image size * fix dynamic image size * fix dynamic dims * fix dynamic dims * simplify config files * fix yolox support * fix negative index * support faster rcnn * add seg config * update benchmark * fix onnx2ascend dynamic shape * update docstring and benchmark * add unit test, update documents * fix wrapper * fix ut * fix for vit * error handling * context handling & multi-device support * build with stub libraries * add ci * fix lint * fix lint * update doc ref * fix typo * down with `target_link_directories` * setup python * makedir * fix ci * fix ci * remove verbose logs * fix UBs * export Error * fix lint * update checkenv Co-authored-by: grimoire <yaoqian@sensetime.com>
72 lines
1.7 KiB
Python
72 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
import tempfile
|
|
|
|
import mmcv
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from mmdeploy.utils import Backend
|
|
from mmdeploy.utils.test import backend_checker
|
|
|
|
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
test_img = torch.rand([1, 3, 8, 8])
|
|
|
|
|
|
@pytest.mark.skip(reason='This a not test class but a utility class.')
|
|
class TestModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x * 0.5
|
|
|
|
|
|
test_model = TestModel().eval()
|
|
|
|
|
|
def generate_onnx_file(model):
|
|
with torch.no_grad():
|
|
dynamic_axes = {
|
|
'input': {
|
|
0: 'batch',
|
|
2: 'width',
|
|
3: 'height'
|
|
},
|
|
'output': {
|
|
0: 'batch'
|
|
}
|
|
}
|
|
torch.onnx.export(
|
|
model,
|
|
test_img,
|
|
onnx_file,
|
|
output_names=['output'],
|
|
input_names=['input'],
|
|
keep_initializers_as_inputs=True,
|
|
do_constant_folding=True,
|
|
verbose=False,
|
|
opset_version=11,
|
|
dynamic_axes=dynamic_axes)
|
|
assert osp.exists(onnx_file)
|
|
|
|
|
|
@backend_checker(Backend.ASCEND)
|
|
def test_onnx2ascend():
|
|
from mmdeploy.apis.ascend import from_onnx
|
|
model = test_model
|
|
generate_onnx_file(model)
|
|
|
|
work_dir, _ = osp.split(onnx_file)
|
|
file_name = osp.splitext(onnx_file)[0]
|
|
om_path = osp.join(work_dir, file_name + '.om')
|
|
model_inputs = mmcv.Config(
|
|
dict(
|
|
dynamic_batch_size=[1, 2, 4],
|
|
input_shapes=dict(input=[-1, 3, 224, 224])))
|
|
from_onnx(onnx_file, work_dir, model_inputs)
|
|
assert osp.exists(work_dir)
|
|
assert osp.exists(om_path)
|