mmdeploy/tests/test_apis/test_onnx2ncnn.py
q.yao b32fc41bed
[Refactor][API2.0] Api refactor2.0 (#529)
* [refactor][API2.0]  Add onnx export and jit trace (#419)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add kwargs

* remove comment

* better pipeline manager

* remove print

* [Refactor][API2.0] Api partition calibration (#433)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add partition

* move calibration

* Better create_calib_table

* better deploy

* add kwargs

* remove comment

* better pipeline manager

* rename api, remove reduant variable, and misc

* [Refactor][API2.0] Api ncnn openvino (#435)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add ncnn api

* finish ncnn api

* add openvino support

* add kwargs

* remove comment

* better pipeline manager

* merge fix

* merge util and onnx2ncnn

* fix docstring

* [Refactor][API2.0] API for TensorRT (#519)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add partition

* move calibration

* Better create_calib_table

* better deploy

* add kwargs

* remove comment

* Add tensorrt API

* better pipeline manager

* add tensorrt new api

* remove print

* rename api, remove reduant variable, and misc

* add docstring

* [Refactor][API2.0] Api ppl other (#528)

* first commit

* add async call

* add new api onnx export and jit trace

* add decorator

* fix ci

* fix torchscript ci

* fix loader

* better pipemanager

* remove comment, better import

* add kwargs

* Add new APIS for pplnn sdk and misc

* remove comment

* better pipeline manager

* merge fix

* update tools/onnx2pplnn.py

* rename function
2022-05-31 09:18:18 +08:00

69 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import pytest
import torch
import torch.nn as nn
from mmdeploy.backend.ncnn.onnx2ncnn import get_output_model_file
from mmdeploy.utils import Backend
from mmdeploy.utils.test import backend_checker
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
test_img = torch.rand([1, 3, 8, 8])
@pytest.mark.skip(reason='This a not test class but a utility class.')
class TestModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * 0.5
test_model = TestModel().eval()
def generate_onnx_file(model):
with torch.no_grad():
dynamic_axes = {
'input': {
0: 'batch',
2: 'width',
3: 'height'
},
'output': {
0: 'batch'
}
}
torch.onnx.export(
model,
test_img,
onnx_file,
output_names=['output'],
input_names=['input'],
keep_initializers_as_inputs=True,
do_constant_folding=True,
verbose=False,
opset_version=11,
dynamic_axes=dynamic_axes)
assert osp.exists(onnx_file)
@backend_checker(Backend.NCNN)
def test_onnx2ncnn():
from mmdeploy.apis.ncnn import from_onnx
model = test_model
generate_onnx_file(model)
work_dir, _ = osp.split(onnx_file)
save_param, save_bin = get_output_model_file(onnx_file, work_dir=work_dir)
file_name = osp.splitext(onnx_file)[0]
from_onnx(onnx_file, osp.join(work_dir, file_name))
assert osp.exists(work_dir)
assert osp.exists(save_param)
assert osp.exists(save_bin)