mmdeploy/tests/test_csrc/capi/test_detector.cpp
Li Zhang 14b2bfd524
[Enhancement] Standardize C API (#634)
* unify C API naming

* fix demo and move apis/c/* -> apis/c/mmdeploy/*

* fix lint

* fix C# project

* fix Java API
2022-07-12 14:04:33 +08:00

97 lines
3.5 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
// clang-format off
#include "catch.hpp"
// clang-format on
#include "mmdeploy/apis/c/mmdeploy/detector.h"
#include "mmdeploy/core/logger.h"
#include "mmdeploy/core/utils/formatter.h"
#include "opencv2/opencv.hpp"
#include "test_resource.h"
using namespace std;
TEST_CASE("test detector's c api", "[.detector][resource]") {
MMDEPLOY_INFO("test detector");
auto test = [](const string &device, const string &model_path, const vector<string> &img_list) {
mmdeploy_detector_t detector{nullptr};
auto ret = mmdeploy_detector_create_by_path(model_path.c_str(), device.c_str(), 0, &detector);
REQUIRE(ret == MMDEPLOY_SUCCESS);
vector<cv::Mat> cv_mats;
vector<mmdeploy_mat_t> mats;
for (auto &img_path : img_list) {
cv::Mat mat = cv::imread(img_path);
REQUIRE(!mat.empty());
cv_mats.push_back(mat);
mats.push_back({mat.data, mat.rows, mat.cols, mat.channels(), MMDEPLOY_PIXEL_FORMAT_BGR,
MMDEPLOY_DATA_TYPE_UINT8});
}
mmdeploy_detection_t *results{nullptr};
int *result_count{nullptr};
ret = mmdeploy_detector_apply(detector, mats.data(), (int)mats.size(), &results, &result_count);
REQUIRE(ret == MMDEPLOY_SUCCESS);
auto result_ptr = results;
for (auto i = 0; i < mats.size(); ++i) {
MMDEPLOY_INFO("the '{}-th' image has '{}' objects", i, result_count[i]);
for (auto j = 0; j < result_count[i]; ++j, ++result_ptr) {
auto &bbox = result_ptr->bbox;
MMDEPLOY_INFO(" >> bbox[{}, {}, {}, {}], label_id {}, score {}", bbox.left, bbox.top,
bbox.right, bbox.bottom, result_ptr->label_id, result_ptr->score);
}
}
mmdeploy_detector_release_result(results, result_count, (int)mats.size());
mmdeploy_detector_destroy(detector);
};
MMDEPLOY_INFO("get test resources");
auto &gResources = MMDeployTestResources::Get();
MMDEPLOY_INFO("locate image resources");
auto img_lists = gResources.LocateImageResources(fs::path{"mmdet"} / "images");
MMDEPLOY_INFO("{}", img_lists.size());
REQUIRE(!img_lists.empty());
for (auto &backend : gResources.backends()) {
MMDEPLOY_INFO("backend: {}", backend);
DYNAMIC_SECTION("loop backend: " << backend) {
auto model_list = gResources.LocateModelResources(fs::path{"mmdet"} / backend);
REQUIRE(!model_list.empty());
for (auto &model_path : model_list) {
MMDEPLOY_INFO("model: {}", model_path);
for (auto &device_name : gResources.device_names(backend)) {
test(device_name, model_path, img_lists);
}
}
}
}
}
#if 0
TEST_CASE("test detector's c api", "[detector]") {
mm_model_t model{};
// pretend the model is loaded
mm_handle_t handle{};
mmdeploy_async_detector_create(model, "cuda", 0, &handle);
std::vector<mm_mat_t> imgs;
std::vector<mmdeploy_sender_t> sndrs;
for (const auto &img : imgs) {
mmdeploy_value_t value = mmdeploy_async_detector_create_input(&img, 1);
mmdeploy_sender_t input = mmdeploy_executor_just(value);
mmdeploy_sender_t detect = mmdeploy_async_detector_apply(handle, input);
mmdeploy_sender_t started = mmdeploy_executor_ensure_started(detect);
sndrs.push_back(started);
}
for (int i = 0; i < imgs.size(); ++i) {
mmdeploy_value_t output = mmdeploy_executor_sync_wait(sndrs[i]);
mm_detect_t *dets{};
int *count{};
mmdeploy_async_detector_get_result(output, &dets, &count);
mmdeploy_detector_release_result(dets, count, 1);
}
mmdeploy_async_detector_destroy(handle);
}
#endif