mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
154 lines
5.4 KiB
C++
154 lines
5.4 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
#include "trt_scatternd.hpp"
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include <chrono>
|
|
|
|
#include "trt_scatternd_kernel.hpp"
|
|
#include "trt_serialize.hpp"
|
|
|
|
namespace mmdeploy {
|
|
namespace {
|
|
static const char *PLUGIN_VERSION{"1"};
|
|
static const char *PLUGIN_NAME{"ScatterND"};
|
|
} // namespace
|
|
|
|
TRTScatterND::TRTScatterND(const std::string &name) : TRTPluginBase(name) {}
|
|
|
|
TRTScatterND::TRTScatterND(const std::string name, const void *data, size_t length)
|
|
: TRTPluginBase(name) {}
|
|
|
|
nvinfer1::IPluginV2DynamicExt *TRTScatterND::clone() const TRT_NOEXCEPT {
|
|
TRTScatterND *plugin = new TRTScatterND(mLayerName);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::DimsExprs TRTScatterND::getOutputDimensions(
|
|
int outputIndex, const nvinfer1::DimsExprs *inputs, int nbInputs,
|
|
nvinfer1::IExprBuilder &exprBuilder) TRT_NOEXCEPT {
|
|
return inputs[0];
|
|
}
|
|
|
|
bool TRTScatterND::supportsFormatCombination(int pos, const nvinfer1::PluginTensorDesc *ioDesc,
|
|
int nbInputs, int nbOutputs) TRT_NOEXCEPT {
|
|
if (pos < nbInputs) {
|
|
switch (pos) {
|
|
case 0:
|
|
// data
|
|
return (ioDesc[pos].type == nvinfer1::DataType::kFLOAT &&
|
|
ioDesc[pos].format == nvinfer1::TensorFormat::kLINEAR) ||
|
|
(ioDesc[pos].type == nvinfer1::DataType::kINT32 &&
|
|
ioDesc[pos].format == nvinfer1::TensorFormat::kLINEAR);
|
|
case 1:
|
|
// indices
|
|
return ioDesc[pos].type == nvinfer1::DataType::kINT32 &&
|
|
ioDesc[pos].format == nvinfer1::TensorFormat::kLINEAR;
|
|
case 2:
|
|
// updates
|
|
return ioDesc[pos].type == ioDesc[0].type && ioDesc[pos].format == ioDesc[0].format;
|
|
default:
|
|
return true;
|
|
}
|
|
} else {
|
|
switch (pos - nbInputs) {
|
|
case 0:
|
|
// output
|
|
return ioDesc[pos].type == ioDesc[0].type && ioDesc[pos].format == ioDesc[0].format;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void TRTScatterND::configurePlugin(const nvinfer1::DynamicPluginTensorDesc *inputs, int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc *outputs,
|
|
int nbOutputs) TRT_NOEXCEPT {}
|
|
|
|
size_t TRTScatterND::getWorkspaceSize(const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
|
|
const nvinfer1::PluginTensorDesc *outputs,
|
|
int nbOutputs) const TRT_NOEXCEPT {
|
|
return 0;
|
|
}
|
|
|
|
int TRTScatterND::enqueue(const nvinfer1::PluginTensorDesc *inputDesc,
|
|
const nvinfer1::PluginTensorDesc *outputDesc, const void *const *inputs,
|
|
void *const *outputs, void *workSpace, cudaStream_t stream) TRT_NOEXCEPT {
|
|
const int *dims = &(inputDesc[0].dims.d[0]);
|
|
const int *indices_dims = &(inputDesc[1].dims.d[0]);
|
|
int nbDims = inputDesc[0].dims.nbDims;
|
|
int indice_nbDims = inputDesc[1].dims.nbDims;
|
|
|
|
const void *data = inputs[0];
|
|
const void *indices = inputs[1];
|
|
const void *update = inputs[2];
|
|
void *output = outputs[0];
|
|
|
|
auto data_type = inputDesc[0].type;
|
|
|
|
switch (data_type) {
|
|
case nvinfer1::DataType::kFLOAT:
|
|
TRTONNXScatterNDKernelLauncher<float>((float *)data, (int *)indices, (float *)update, dims,
|
|
nbDims, indices_dims, indice_nbDims, (float *)output,
|
|
stream);
|
|
break;
|
|
|
|
case nvinfer1::DataType::kINT32:
|
|
TRTONNXScatterNDKernelLauncher<int>((int *)data, (int *)indices, (int *)update, dims, nbDims,
|
|
indices_dims, indice_nbDims, (int *)output, stream);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
nvinfer1::DataType TRTScatterND::getOutputDataType(int index, const nvinfer1::DataType *inputTypes,
|
|
int nbInputs) const TRT_NOEXCEPT {
|
|
return inputTypes[0];
|
|
}
|
|
|
|
// IPluginV2 Methods
|
|
const char *TRTScatterND::getPluginType() const TRT_NOEXCEPT { return PLUGIN_NAME; }
|
|
|
|
const char *TRTScatterND::getPluginVersion() const TRT_NOEXCEPT { return PLUGIN_VERSION; }
|
|
|
|
int TRTScatterND::getNbOutputs() const TRT_NOEXCEPT { return 1; }
|
|
|
|
size_t TRTScatterND::getSerializationSize() const TRT_NOEXCEPT { return 0; }
|
|
|
|
void TRTScatterND::serialize(void *buffer) const TRT_NOEXCEPT {}
|
|
|
|
TRTScatterNDCreator::TRTScatterNDCreator() {
|
|
mPluginAttributes.clear();
|
|
mFC.nbFields = mPluginAttributes.size();
|
|
mFC.fields = mPluginAttributes.data();
|
|
}
|
|
|
|
const char *TRTScatterNDCreator::getPluginName() const TRT_NOEXCEPT { return PLUGIN_NAME; }
|
|
|
|
const char *TRTScatterNDCreator::getPluginVersion() const TRT_NOEXCEPT { return PLUGIN_VERSION; }
|
|
|
|
nvinfer1::IPluginV2 *TRTScatterNDCreator::createPlugin(
|
|
const char *name, const nvinfer1::PluginFieldCollection *fc) TRT_NOEXCEPT {
|
|
TRTScatterND *plugin = new TRTScatterND(name);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::IPluginV2 *TRTScatterNDCreator::deserializePlugin(const char *name,
|
|
const void *serialData,
|
|
size_t serialLength) TRT_NOEXCEPT {
|
|
auto plugin = new TRTScatterND(name, serialData, serialLength);
|
|
plugin->setPluginNamespace(getPluginNamespace());
|
|
return plugin;
|
|
}
|
|
|
|
REGISTER_TENSORRT_PLUGIN(TRTScatterNDCreator);
|
|
} // namespace mmdeploy
|